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Abstract— Micro Aerial Vehicles (MAVs) that operate in
unstructured, unexplored environments require fast and flexible
local planning, which can replan when new parts of the map are
explored. Trajectory optimization methods fulfill these needs,
but require obstacle distance information, which can be given
by Euclidean Signed Distance Fields (ESDFs).

We propose a method to incrementally build ESDFs from
Truncated Signed Distance Fields (TSDFs), a common implicit
surface representation used in computer graphics and vision.
TSDFs are fast to build and smooth out sensor noise over many
observations, and are designed to produce surface meshes.

We show that we can build TSDFs faster than Octomaps,
and that it is more accurate to build ESDFs out of TSDFs
than occupancy maps. Our complete system, called voxblox,
is available as open source and runs in real-time on a single
CPU core. We validate our approach on-board an MAV, by
using our system with a trajectory optimization local planner,
entirely on-board and in real-time.

I. INTRODUCTION

Rotary-wing Micro Aerial Vehicles (MAVs) have become
one of the most popular robotics research platforms, as their
agility and small size makes them ideal for many inspection
and exploration applications. However, their low payload and
power budget, combined with fast dynamics, requires fast
and light-weight algorithms. Planning in unstructured, unex-
plored environments poses a particularly difficult problem,
as both mapping and planning have to be done in real-time.
In this work, we focus specifically on providing a map for
local planning, which quickly finds feasible paths through
changing or newly-explored environments. Furthermore, hu-
mans often supervise high-level mission goals, and therefore
we also aim to provide a human-readable representation of
the environment.

While many algorithms are well-suited for global MAV
planning (such as RRTs, graph search methods, and mixed-
integer convex programs), local re-planning requires algo-
rithms that can find feasible (though not necessarily optimal)
paths in minimal time. Trajectory optimization-based plan-
ning methods are well suited to these problems, as they are
very fast and able to deal with complex environments. How-
ever, they require the distances to obstacles to be known at all
points in a map, as well as distance gradients [1], [2]. These
distance maps are usually computed from an occupancy map
such as Octomap [3], most often in batch, but more recently
some incremental approaches have appeared [4]. The main
drawback of these methods is that the maximum size of the
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Fig. 1: A planning experiment using voxblox-generated
TSDF (shown as grayscale mesh) and ESDF (shown as a
horizontal slice of the 3D grid) running entirely in real-time
and on-board the MAV, not using any external sensing. The
vehicle attempts to plan to a point behind the mannequin
by using a trajectory optimization-based method [2] which
relies on having smooth distance costs and gradients.

map must be known a priori, and cannot be dynamically
changed.

We attempt to overcome these shortcomings by propos-
ing a system capable of incrementally building Euclidean
Signed Distance Fields (ESDFs) online, in real-time on a
dynamically growing map, while using an underlying map
representation that is well-suited to visualization. ESDFs
are a voxel grid where every point contains its Euclidean
distance to the nearest obstacle. Truncated Signed Distance
Fields (TSDFs) have recently become a common implicit
surface representation for computer graphics and vision
applications [5], [6], as they are fast to construct, filter
out sensor noise, and can create human-readable meshes
with sub-voxel resolution. In contrast to ESDFs, they use
projective distance, which is the distance along the sensor ray
to the measured surface, and calculate these distances only
within a short truncation radius around the surface boundary.
We propose to build ESDFs directly out of TSDFs and
leverage the distance information already contained within
the truncation radius, while also creating meshes for remote
human operators. We assume that the MAV is using stereo
or RGB-D as the input to the map, and that its pose estimate
is available.

Our experiments on real datasets show that we can build
TSDFs faster than Octomaps [3], which are commonly
used for MAV planning. We also analyze sources of error
in our ESDF construction strategy, and validate the speed



and accuracy of our method against simulated ground truth
data. Based on these results, we make recommendations on
the best parameters for building both TSDFs and ESDFs
for planning applications. Finally, we show the complete
system integrated and running in closed-loop as part of an
online replanning strategy, entirely on-board an MAV. This
complete system, named voxblox, is available as an open-
source library at github.com/ethz-asl/voxblox.

The contributions of this work are as follows:
• Present the first method to incrementally build ESDFs

out of TSDFs in dynamically growing maps.

• Analyze different methods of building a TSDF to
maximize reconstruction speed and surface accuracy
at large voxel sizes.

• Provide both analytical and experimental analysis of
errors in the final ESDF, and propose safety margins
to overcome these errors.

• Validate the complete system by performing online
replanning using these maps on-board an MAV.

II. RELATED WORK

This section gives a brief overview of different map rep-
resentations used for planning, and existing work in building
ESDFs and TSDFs.

Occupancy maps are a common representation for plan-
ning. One of the most popular 3D occupancy maps is called
Octomap [3], which uses a hierarchical octree structure to
store occupancy probabilities. However, there are planning
approaches for which only occupancy information is insuffi-
cient. For example, trajectory optimization-based planners,
such as CHOMP [7], require distances to obstacles and
collision gradient information over the entire workspace of
the robot. This is usually obtained by building an ESDF in
batch from another map representation.

While creating ESDFs or Euclidean Distance Transforms
(EDTs) of 2D and 3D occupancy information is a well-
studied problem especially in computer graphics, most recent
work has focused on speeding up batch computations using
GPUs [8], [9]. However, our focus is to minimize computa-
tion cost on a CPU-only platform.

Lau et al. have presented an efficient method of in-
crementally building ESDFs out of occupancy maps [4].
Their method exploits the fact that sensors usually observe
only a small section of the environment at a time, and
significantly outperforms batch ESDF building strategies for
robotic applications. We extend their approach to be able
to build ESDFs directly out of TSDFs, rather than from
occupancy data, exploiting the existing distance information
in the TSDF.

TSDFs, originally used as an implicit 3D volume repre-
sentation for graphics, have become a popular tool in 3D
reconstruction with KinectFusion [6], which uses the RGB-
D data from a Kinect sensor and a GPU adaptation of Curless
and Levoy’s work [5], to create a system that can reconstruct
small environments in real-time at millimeter resolution.

Fig. 2: System diagram for voxblox, showing how the
multiple map layers (TSDF, ESDF, and mesh) interact with
each other and with incoming sensor data through integrators.

The main restriction of this approach is the fixed-size voxel
grid, which requires a known map size and a large amount of
memory. There have been multiple extensions to overcome
this shortcoming, including using a moving fixed-size TSDF
volume and meshing voxels exiting this volume [10], using
an octree-based voxel grid [11], and allocating blocks of
fixed size on demand in a method called voxel hashing [12].
We follow the voxel-hashing approach to allow our map to
grow dynamically as the robot explores the environment.

The focus of all of these methods is to output a high-
resolution mesh in real-time using marching cubes [13],
frequently on GPUs. There has also been work on speeding
up these algorithms to run on CPU [11] and even on mobile
devices [14]; however, the application of high-resolution 3D
reconstruction remains the same. Instead, our work focuses
on creating representations that are accurate and fast enough
to use for planning onboard mobile robots, while using large
voxels to speed up computations and save memory.

One existing work that combines ESDFs and TSDFs is
that of Wagner et al., who use KinectFusion combined with
CHOMP for planning for an armed robot [15], [16]. How-
ever, instead of updating the ESDF incrementally, they first
build a complete TSDF, then convert it to an occupancy grid
and compute the ESDF in a single batch operation for a fixed-
size volume. In contrast, our incremental approach gives us
the ability to maintain an ESDF directly from a TSDF, handle
dynamically growing the map without knowing its size a
priori, and is significantly faster than batch methods.

Features such as CPU computation time, incremental
ESDF construction, and dynamically-growing map are es-
sential for a map representation to use for on-board local
planning for an MAV.

III. SYSTEM

Our overall system functions in two parts: first, incorpo-
rating incoming sensor data into a TSDF (described in detail
in Section IV), and then propagating updated voxels from
the TSDF to update the ESDF (see Section V).

Fig. 2 shows the overall system diagram. Sensor data from
stereo or RGB-D sensors comes in as colored pointclouds,
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which are then integrated into the TSDF as discussed in
Section IV using raycasting into the voxel map. Updated
voxels from the TSDFs are marked, and then at a given
frequency, the ESDF is updated by propagating changes from
the TSDF and doing wavefront propagation, as shown in
Section V. The mesh is also built on-demand from the latest
state of the TSDF for visualization purposes.

In order to make it suitable for exploration and mapping
applications, we use a dynamically sized map that makes
use of the voxel hashing approach of Niessner et al. [12].
Each type of voxel (TSDF or ESDF) has its own layer, and
each layer contains independent blocks that are indexed by
their position in the map. A mapping between the block
positions and their locations in memory is stored in a hash
table, allowing O(1) insertions and look-ups. This makes
the data structure flexible to growing maps, and additionally
allows faster access than octree structures such as used by
Octomap (which is O(log n)).

IV. TSDF CONSTRUCTION

TSDFs are constructed out of pointcloud data by raycast-
ing points in a sensor pointcloud into a global map, then
averaging the new projective distance measurements into
existing voxels, calculating distances only up to a truncation
distance of δ. Choices in how to build a TSDF out of sensor
data can have a large impact on both the integration speed
and the accuracy of the resulting reconstruction. Here we
present weighting (how new measurements are averaged with
existing measurements) and merging (how points from the
sensor data are grouped) strategies, which increase accuracy
and speed especially at large voxel sizes.

A. Weighting

A common strategy to integrate a new scan into a TSDF
is to ray-cast from the sensor origin to every point in the
sensor data, and update the distance and weight estimates
of voxels along this ray. The choice of weighting function
can have a strong impact on the accuracy of the resulting
reconstruction, especially for large voxels, where thousands
of points may be merged into the same voxel per scan.

KinectFusion discussed using weights based on θ, the
angle between the ray from the sensor origin and the nor-
mal of the surface, however advocate for using a simpler
constant weight [6]. This is a common approach in other
literature [10], [12], [17], [18].

The general equations governing the merging are based on
the existing distance and weight values of a voxel, D and W ,
and the new update values from a specific point observation
in the sensor, d and w, where d is the distance from the
surface boundary. Given that x is the center position of the
current voxel, p is the position of a 3D point in the incoming
sensor data, s is the sensor origin, and x,p, s ∈ R3, the
updated D distance and W weight values of a voxel at x

will be:

d(x,p, s) = ‖p− x‖ sign
(
(p− x) • (p− s)

)
(1)

wconst(x,p) = 1 (2)

Di+1(x,p, s) =
Wi(x)Di(x) + w(x,p)d(x,p, s)

Wi(x) + w(x,p)
(3)

Wi+1(x,p) = min
(
Wi(x) + w(x,p),Wmax

)
(4)

We propose a more sophisticated weight to compare to
the constant weighting shown above. Bylow et al. compared
the effects of dropping the weight off behind the isosurface
boundary, and found that a linear drop-off often yielded the
best results [17]. Nguyen et al. empirically determined the
RGB-D sensor model, and found that the σ of a single ray
measurement varied predominantly with z2 [19], where z
is the depth of the measurement in the camera frame. We
combined a simplified approximation of the RGB-D model
with the behind-surface drop-off as follows:

wquad(x,p) =


1
z2 −ε < d
1
z2

1
δ−ε (d+ δ) −δ < d < −ε

0 d < −δ,
(5)

where we use a truncation distance of δ = 4v and ε = v,
and v is the voxel size.

Intuitively, this would make an even bigger difference
in the presence of thin surfaces that are observed from
multiple viewpoints, as this reduces the influence of voxels
that have actually not been directly observed (those behind
the surface). An analysis of the effect this weighting has on
surface reconstruction accuracy is presented in Section VI-A.

B. Merging

We aim to speed up merging of new sensor data into the
TSDF by designing a strategy that only performs raycasts
once per end voxel, exploiting the relatively large voxel
size compared to the resolution of the incoming sensor
pointclouds.

There are two main methods for integrating information
from a sensor data into a TSDF: raycasting [5] and projection
mapping [6] [14].

Raycasting casts a ray from the camera optical center to
the center of each observed point, and updates all voxels
from the center to truncation distance δ behind the point.
Projection mapping instead projects voxels in the visual field-
of-view into the depth image, and computes its distance from
the distance between the voxel center and the depth value in
the image. It is significantly faster, but leads to strong aliasing
effects for larger voxels [14].

Our approach, grouped raycasting, significantly speeds up
raycasting without losing much accuracy. For each point in
the sensor scan, we project its position to the voxel grid,
and group it with all other points mapping to the same voxel,
taking the mean color and distance across grouped points and
performing raycasting only once. This leads to a very similar
reconstruction result while being up to 20 times faster than
the naive raycasting approach, as shown in Section VI-A.



V. CONSTRUCTING ESDF FROM TSDF

In this section we discuss how to build an ESDF for plan-
ning out of a TSDF built from sensor data, and then analyze
bounds on the errors introduced by our approximations.

A. Construction

We base our approach on the work of Lau et al., who
present a fast algorithm for dynamically updating ESDFs
from occupacy maps [4]. We extend their method to take
advantage of TSDFs as input data, and additionally allow
the ESDF map to dynamically change size. The complete
method is shown in Algorithm 1, where vT represents a voxel
in the original TSDF map and vE is the co-located voxel in
the ESDF map.

One of the key improvements we have made is to use
the distance stored in the TSDF map, rather than computing
the distance to the nearest occupied voxel. In the original
implementation, each voxel had an occupied or free status
that the algorithm could not change. Instead, we replace this
concept with a fixed band around the surface: ESDF voxels
that take their values from their co-located TSDF voxels, and
may not be modified. The size of the fixed band is defined
by TSDF voxels whose distances fulfill |vT.d| < γ, where γ
is the radius of the band, analyzed further in Section V-B.

The general algorithm is based on the idea of wavefronts –
waves that propagate from a start voxel to its neighbors
(using 26-connectivity), updating their distances, and putting
updated voxels into the wavefront queue to further propagate
to their neighbors. We use two wavefronts: raise and lower.
A voxel gets added to the raise queue when its new distance
value from the TSDF is higher than the previous value stored
in the ESDF voxel. This means the voxel, and all its children,
need to be invalidated. The wavefront propagates until no
voxels are left with parents that have been invalidated.

The lower wavefront starts when a new fixed voxel enters
the map, or a previously observed voxel lowers its value.
The distances of neighboring voxels get updated based on
neighbor voxels and their distances to the current voxel. The
wavefront ends when there are no voxels left whose distance
could decrease from its neighbors.

Unlike Lau et al. [4], who intersperse the lower and raise
wavefronts, we raise all voxels first, then lower all voxels to
reduce bookkeeping. Additionally, where they treat unknown
voxels as occupied, we do not update unknown voxels. For
each voxel, we store the direction toward the parent, rather
than the full index of the parent. For quasi-Euclidean distance
(shown in the algorithm), this parent direction is toward an
adjacent voxel, while for Euclidean distance, it contains the
full distance to the parent. A full discussion of Euclidean
versus quasi-Euclidean distance is offered in the section
below.

Finally, since new voxels may enter the map at any time,
each ESDF voxel keeps track of whether it has already been
observed. We then use this in line 20 of Algorithm 1 to do
a crucial part of bookkeeping for new voxels: adding all of
their neighbors into the lower queue, so that the new voxel
will be updated to a valid value.

Algorithm 1 Updating ESDF from TSDF
1: function PROPAGATE(mapESDF, mapTSDF)
2: for each voxel vT in updated voxels in mapTSDF
3: if ISFIXED(vT)
4: if vE.d > vT.d or not vE.observed
5: vE.observed← True
6: vE.d← vT.d
7: INSERT(lower, vE)
8: else
9: vE.d← vT.d

10: INSERT(raise, vE)
11: INSERT(lower, vE)
12: else
13: if vE.fixed
14: vE.observed← True
15: vE.d← sign(vT.d) · dmax
16: INSERT(raise, vE)
17: else if not vE.observed
18: vE.observed← True
19: vE.d← sign(vT.d) · dmax
20: INSERTNEIGHBORS(lower, vE)
21: PROCESSRAISEQUEUE(raise)
22: PROCESSLOWERQUEUE(lower)
23: function ISFIXED(vE) return −γ < vE.d < γ

24: function INSERTNEIGHBORS(queue, vE)
25: for each neighbor of vE
26: INSERT(queue, neighbor)
27: function PROCESSRAISEQUEUE(raise)
28: while raise 6= ∅
29: vE ← POP(raise)
30: vE.d← sign(vE.d) · dmax
31: for each neighbor of vE
32: if vE.direction(neighbor) = neighbor.parent
33: INSERT(raise, neighbor)
34: else
35: INSERT(lower, neighbor)
36: function PROCESSLOWERQUEUE(lower)
37: while lower 6= ∅
38: vE ← POP(lower)
39: for each neighbor of vE at distance dist
40: if neighbor.d > 0 and vE.d+ dist < neighbor.d
41: neighbor.d← vE.d+ dist
42: neighbor.parent ← −vE.direction(neighbor)
43: INSERT(lower, neighbor)
44: else if neighbor.d < 0 and vE.d− dist > neighbor.d
45: neighbor.d← vE.d− dist
46: neighbor.parent ← −vE.direction(neighbor)
47: INSERT(lower, neighbor)

Our approach incorporates a bucketed priority queue to
keep track of which voxels need updates, with a priority of
|d|. In the results, we compare two different variants: a FIFO
queue and a priority queue (where the voxel with the smallest
absolute distance is updated first).

B. Sources of Error in ESDF

When using maps for planning, it is essential to know
what effect the method has on the error in the final distance
computations. In this section, we aim to quantify the effect
of our approximations and recommend a safety margin by
which to increase bounding boxes used for planning.

We consider two key contributions to error in the final
ESDF: first, the TSDF projective distance calculations, and
second, the quasi-Euclidean approximation in distance cal-
culations.

Projective distance (distance along the camera ray to
the surface) will always match or overestimate the actual



Euclidean distance to the nearest surface. Therefore, to use
projective distances from the TSDF, we need to quantify the
error this will introduce. The error is dependent on d, the
measured distance of the voxel, and θ, the incidence angle
between the camera ray and the object surface. We assume
locally planar objects. The projective error residual rp(θ) can
therefore be expressed as:

rp(θ) = d sin(θ)− d (6)

For the purposes of this analysis, we assume that the
incidence angle θ can be between π/20 and π/2, and is
uniformly distributed in this range. The lower bound of
π/20 comes from the observation that a camera ray can
not be parallel to a surface boundary, nor can a camera
exist infinitesimally close to a surface, due to the physical
dimensions of the camera. π/20 corresponds to an MAV a
minimum of 1 meter away from a surface with a maximum
sensor ray length of 5 meters. Given that f(θ) is the uniform
distribution between π/20 and π/2, as this is symmetric, then
the expected error for a single voxel observation will be:

E[rp(θ)] =
∫ π

2

π
20

20

9π
(d sin(θ)− d) dθ

= −0.3014d (7)

Note that d has an upper bound of the truncation distance δ.
However, this does not consider multiple observations of

the same voxel, which will lower this error. To quantify this,
we performed Monte Carlo simulations of merging multiple
independent measurements of the same voxel, shown in Fig.
3. The results show that even for as few as 3 observations,
the error has an upper bound of 0.5δ with p = 0.95, and
as the number of observations increases, the error at this
probability is reduced down to below 0.25δ.

Depending on how large the fixed band is determines how
much to compensate for this error. If only a single voxel of
the surface frontier is used, then it is safe to increase the
safety distance by half of one voxel.

The second source of error considered is from the quasi-
Euclidean distance assumption in the ESDF calculations.
Quasi-Euclidean distance is measured along horizontal, ver-
tical, and diagonal lines in the grid, leading to no error when
the angle φ between the surface normal and the ray from the
surface to the voxel is a multiple of 45◦, and a maximum
error at φ = 22.5◦ [20]. If φ is uniformly distributed between
0 and π/4 the residual rq(φ) for this error, and its maximum
and expected values are:

rq(φ) =
(
d− d sin(5π/8− φ)

sin(3π/8)

)
(8)

rq(
π

8
) = −0.0824d (9)

E[rq(φ)] =
∫ π

4

0

4

π

(
d− d sin(5π/8− φ)

sin(3π/8)

)
dφ

= −0.0548d (10)

Since the d in this case only has an upper bound in the
maximum ESDF computed distance, we recommend inflat-
ing the bounding box of the robot by 8.25%. Section VI-B
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Fig. 3: Probability of the distance error being below a
threshold, for a given voxel distance measurement. (a) shows
the probabilities for 3 voxel observations, and (b) shows 95%
probability contours for multiple observations. For a single
voxel observation, the maximum error with p = 0.95 is 0.8δ,
while for 3 observations p = 0.95 falls at 0.5δ, and trends
towards 0.25δ as the number of observations grows.

has empirical results on what effect this assumption has on
the overall error in the ESDF computations, and shows that
in practice it is small enough to justify the speed-up between
full Euclidean and quasi-Euclidean distance.

VI. EXPERIMENTAL RESULTS

In this section we validate the algorithms presented above
on two real-world datasets: the cow dataset with an RGB-
D sensor and EuRoC with a stereo camera, both validated
against structure ground truth.

The cow dataset1 features several objects including a large
fiberglass cow in a small room. It is taken with the original
Microsoft Kinect, uses pose data from a Vicon motion
capture system, and the ground truth is from a Leica TPS
MS50 laser scanner with 3 scans merged together.

The EuRoC dataset is a public benchmark on 3D recon-
struction accuracy [21], in a medium-sized room filled with
objects. It is taken with a narrow-baseline grayscale stereo
sensor, using Vicon fused with IMU as pose information,
and Leica TPS MS50 scans as structure ground truth. We
use the V1 01 easy dataset for experiments.

All experiments are done on a quad-core i7 CPU at 2.5
GHz. Only one thread is used.

A. TSDF Construction

In order to verify that our weighting strategy scales well
with larger voxel sizes, we validate our TSDF reconstructions
against the structure ground truth for our datasets.

We evaluate the accuracy of our reconstruction by project-
ing each point in the ground truth pointcloud into the TSDF,
performing trilinear interpolation to get the best estimate of
the distance at that point, and taking that distance as an error.
We consider only known voxels, and allow a maximum error
equal to the truncation distance (δ = 4v).

Qualitative comparison are shown on the cow dataset in
Fig. 4, compared to the ground truth cow silhouette. As

1projects.asl.ethz.ch/datasets/doku.php?id=iros2017

projects.asl.ethz.ch/datasets/doku.php?id=iros2017
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Fig. 4: Qualitative comparisons of weighting/merging strate-
gies on the cow dataset, colored by normals and with the
object outline from ground truth overlaid. As can be seen,
especially at large voxel sizes, our weighting strategy distorts
the structure less.
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Fig. 5: Structure accuracy reconstruction results for TSDFs
with various voxel sizes, and comparing constant weight and
quadratic weight with linear drop-off behing the surface. It
can be seen that the choice of weighting function makes
a more significant difference at larger voxel sizes, as more
measurements are combined into any given voxel.

can be seen, constant weighting significantly distorts the
geometry of the cow at larger voxel sizes: the head is no
longer in the correct position, and the rear legs are gone
entirely, which will lead to incorrect distance estimates in
the ESDF, while our weighting strategy better preserves
structure.

Fig. 5 shows a quantitative comparison on both datasets
with respect to voxel size: as can be seen, weighting has
a more significant effect on error as voxel size increases,
and our proposed quadratic weighting always outperforms
constant weighting.

A comparison of the timings between various merging
strategies and against Octomap [3] is shown in Fig. 6. While
Octomap with the grouped raycasting strategy as discussed
in Section IV-B is already significantly faster than normal
raycasting Octomap, it is still substantially slower than our
TSDF approach. This is due to the hierarchical data structure:
as the number of nodes in the Octomap grows larger, look-
ups in the tree get slower, as they scale with O(log n);
with voxel hashing [12], the lookups remain O(1). Grouped
raycasting leads to significant speeds up, especially with
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Fig. 6: Timing results for different merging strategies on the
EuRoC dataset. Our approach is up to 20 times faster than
standard raycasting into a TSDF, and up to 2 times faster
than even grouped Octomap insertions. Note log time scale.

Fig. 7: A normal-colored ground-truth mesh of the simulation
experiment, with 3 planes (not pictured: ground plane), a
cube, and a sphere. Also shown is a horizontal slice of the
ESDF generated from 50 random viewpoints with a voxel
size of 0.05 meters.

larger voxel sizes (as more points project into the same
voxel). Overall, we show that using our merging strategy
makes using TSDFs feasible on a single CPU core, allowing
it to be used for real-time mapping and planning applications
on-board an MAV.

B. ESDF Construction

1) Simulation Results: To evaluate the errors introduced
by various ESDF construction methods, we set up a simu-
lated benchmark with 3 planes, a sphere, and a cube, shown
with a horizontal ESDF slice in Fig. 7, of size 10× 10× 10
meters. We simulated a noiseless RGB-D sensor with a
resolution of 320×240 and a maximum distance of 5 meters.
Readings were taken at 50 random free-space locations,
uniformly sampled from all 6 DoF poses in the space that
were a minimum of 1 meter from an obstacle.

We produced ground truth ESDFs of the space by evalu-
ating the minimum distance to the objects at voxel centers.
We then built a TSDF out of the simulated sensor data, and
used multiple ESDF building methods to compare their error
against this ground truth, as well as their integration times,
shown in Fig. 8. The most basic method, occupancy, treats all
negative-valued TSDF voxels as occupied and assigns them
a distance of 0, similar to Wagner et al. [16] The next set
of methods takes a band of values around the surface of the
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Fig. 8: A comparison of methods for generating ESDFs from
TSDFs and occupancy, and their errors and timing differ-
ences. Using all of the data in half the truncation distance is
more accurate thanoccupancy, while using only one voxel-
width of the surface outperforms all other methods, as shown
in (a). Quasi-Euclidean distance has only a marginal increase
in error for a large decrease in computation time (b).

TSDF of half the size of the truncation distance (δ/2 < |d|),
and we compare both full Euclidean and quasi-Euclidean
distances. The last set of methods takes a one-voxel-wide
band around the surface, with both quasi-Euclidean and
Euclidean distance.

As can be seen, the lowest errors are found by taking a
one-voxel-wide fixed band around the surface. This is due
to the projection error discussed in Section V-B. However,
it is important to note that all of the methods have a signifi-
cantly lower error than using occupancy values, showing the
advantages of building these maps out of TSDFs rather than
occupancy maps.

While using full Euclidean distance shows improvement
in ESDF error of 8.23%, 5.18%, and 4.72% in the half-
truncation distance method for voxel sizes of 0.05, 0.10,
and 0.20 meters, respectively, the integration times are in-
creased by 201.0%, 61.3%, and 33.9%. Given that real-
time execution is one of the core goals of this approach,
our findings show that for many applications, using quasi-
Euclidean distance is a good trade-off between error and
runtime.

2) Real Data: To validate the presented ESDF runtimes,
we used real data from the EuRoC dataset for our evaluations
on incremental and batch timings, using two different queue-
ing methods, as discussed in Section V. It can be seen in Fig.
9 that building the ESDF incrementally leads to an order of
magnitude speedups over the entire dataset, and that at large
voxel sizes, using a single-insert priority queue is faster than
using a FIFO queue.

We also compare the integration time of the TSDF with
update time of the ESDF layer in Fig. 10. Though for small
voxel sizes, the ESDF update is slower than integrating new
TSDF scans, at large enough voxels (here, v = 0.20 m), the
TSDF integration time flattens out while the ESDF update
time keeps decreasing. Since the number of points that need
to be integrated into the TSDF does not vary with the voxel
size, projecting the points into the voxel map dominates the
timings for large voxels.
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Fig. 9: Timing results for updating ESDF in batch and incre-
mentally, with different queueing strategies on the EuRoC
dataset. The normal FIFO queue performs best for small
voxel sizes, and at large voxel sizes, there is a speed-up
from using a single-insert priority queue. Note the log time
scale.
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Fig. 10: Timings results for integrating new data into the
TSDF compared to propagating new TSDF updates to the
ESDF on the EuRoC dataset. At small voxel sizes, TSDF
integration is faster, but flattens out at large voxel sizes as
the amount of sensor data does not decrease, while ESDF
timings continue to decrease.

Based on these results, we recommend to use a single-
voxel fixed band, quasi-Euclidean distance, and a priority
queue for ESDF construction.

VII. MAV PLANNING EXPERIMENTS

To prove the usefulness of our generated ESDF for a
real planning application, we set up an experiment with an
MAV exploring an unknown space and replanning online
as its ESDF gets updated. A photo and screenshot of this
experiment is shown in Fig. 1, and the complete trial can
be seen in the video attachment. The platform we used is an
Asctec Firefly, equipped with a forward-facing stereo camera
synced to an IMU, which we use for stereo matching as input
to the mapping process, and also as input to the visual-inertial
state estimator. All state estimation, reconstruction, planning,
and control runs entirely on-board on the Intel i7 2.1 GHz
CPU without using any external sensing or infrastructure.

For this experiment, we use the continuous-time trajectory
optimization replanning approach presented in [2], which
relies on having smooth collision costs and gradients from
a Euclidean distance map. We update the ESDF at 4 Hz,



and replan after every map update, using 0.20 meter voxels.
Even with random restarts in the optimization procedure,
the complete system including TSDF construction, ESDF
updates, and replanning was able to run well under the 250
ms time budget.

We made one extension to the planning method to guar-
antee good performance: since the planner can not handle
unknown space (as there are no collision gradients available),
we allocate a 5 meter sphere around the robot’s current
position and mark all unknown voxels in that sphere as
occupied. To compensate for fact that the MAV can not
observe its current position (and would therefore mark it
as unknown), we take a smaller 1 meter sphere around the
robot’s start position and mark all unknown voxels in this
smaller sphere as free. Note that these changes do not affect
any voxels that have actually been observed – only unknown
voxels are modified.

This experiment demonstrates that the proposed mapping
approach can be used in combination with a planner and
state estimator to navigate a small aerial robotic platform
to a waypoint in a previously unknown environment while
continually replanning to avoid obstacles. This is achieved
while staying within the computational limits of the platform
and operating in real time.

VIII. CONCLUSIONS

This paper aims to find a suitable map representation
for local planning on MAVs in unexplored environments.
Euclidean Signed Distance Fields (ESDFs) provide distance
information to obstacles, which is essential for trajectory op-
timization planners. In contrast, Truncated Signed Distance
Fields (TSDFs) are fast to build, filter out noise in sensor
data, and can be used to easily create human-interpretable
meshes. We propose to incrementally build ESDFs directly
out of TSDFs, rather than occupancy-based representations.
We extend existing methods to take advantage of distance
information in the TSDF and allow dynamically-growing
maps by using voxel hashing as the underlying data structure.

We focus on reducing the computational complexity of
building these maps, while quantifying the errors introduced
in our approximations to guarantee planning safety. Our
results suggest building a TSDF with 20 cm voxels, using
grouped raycasting, and quadratic weights with linear drop-
off behind a surface boundary. We also recommend using a
one-voxel fixed band from the TSDF in order to build the
ESDF, using quasi-Euclidean distances, and a distance-based
priority queue for processing the open set. Given possible
sources of error in the maps, we recommend inflating the
robot bounding box by 8.5% + 0.3v, where v is the voxel
size.

We show that our method of building the TSDF is faster
than building an Octomap, and that the accuracy of an
ESDF built from a TSDF is higher than if built from an
occupancy map. Finally, we validate our complete system by
building maps and using them to plan online with a trajectory
optimization replanner, entirely on-board an MAV.
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