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Abstract

There is a rapidly-growing list of commercial, industrial, and humanitarian appli-
cations for Micro-Aerial Vehicles (MAVs), due to their agility, ability to move freely
in 3D space, and relatively low cost. However, until recently, these vehicles were
used in one of two modes: either complete manual flight with an experienced pilot,
or remote inspection by following GPS waypoints. Allowing these robots to assist
human operators in search and rescue (S&R) and industrial inspection scenarios
requires tackling far more challenges than these two modes of operation allow.

These two environments pose specific problems that must be addressed before an
MAV can be a useful collaborator. First, these areas are usually entirely or partially
GPS-denied, so all state estimation must rely entirely on on-board sensing. Second,
especially for search and rescue or more complex industrial inspection tasks such
as boilers, communication to a ground station may not always be available and
cannot be guaranteed. Therefore, all processing must be performed on-board and
the robot must behave intelligently when no external commands are sent. Similarly,
we can not rely on having a skilled pilot, therefore all low-level operation must be
handled by the vehicle itself. Finally, the MAV must be able to safely operate
very close to structure and in cluttered environments, and be able to return with
a usable map for the human operators.

We propose that to create a system that is able to address all of these require-
ments, mapping and planning must be closely coupled. While previous work exists
solving lower-level problems such as on-board state estimation and accurate con-
trol, this thesis attempts to fill the gap one level above: representing the environ-
ment and making short- and long-term plans through it. Our approach focuses on
a novel map representation, specifically designed for the needs of planning and in-
spection tasks, and using planning algorithms that exploit all available information
in the map.

We describe the specific contributions of the thesis below. First, we propose a fast
local replanning method which uses local trajectory optimization on polynomial
splines to push dynamically-feasible trajectories out of collision. This method
allows us to do conservative planning, meaning that unknown space is considered
occupied, and replan at up to 25 Hz. However, since it relies on obstacle gradients,
it needs a map representation capable of storing and updating distances to obstacles
incrementally.

To address this need, we design a flexible map representation called voxblox,
which is based on dense voxel grids storing signed distance fields. We propose a
method to incrementally update Euclidean Signed Distance Fields (ESDFs) out of
Truncated Signed Distance Fields (TSDFs), which are traditionally used for 3D
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Abstract

reconstruction. We further extend TSDF-based methods to be more suitable for
large voxel sizes, which are necessary for real-time planning applications. This
mapping approach allows us to create high-fidelity colored meshes for assisting hu-
man operators, while simultaneously maintaining a map representation that gives
collision checks in a single look-up and gradient information toward obstacles, and
outperforming existing methods in computation speed.

Next, we tackle issues that our planning approach faces in extremely cluttered
environments: that of falling into local minima when no path toward the goal is
visible. We propose to use a local exploration strategy, which selects next view-
points that trade-off maximizing exploration gain and minimizing distance toward
the goal whenever the local planning fails. We show that this substantially increases
our success rates even in environments that are up to 50% obstacles, and out-
performs the standard method of using an optimistic (treating unknown space as
free) global planner.

To further take advantage of information available in our map representation, we
propose a deterministic topology-based planning method. We exploit the property
that ridges in the ESDF form faces in the Generalized Voronoi Diagram (GVD),
and from this we can extract maximum-clearance edges through the free space.
We then fit a sparse graph to these edges, creating a very compact representation
of the environment, which can be used to plan an order of magnitude faster than
the fastest sampling-based approach, while implicitly handling narrow gaps that
sampling-based methods struggle with.

Finally, we present a complete system using all components proposed in this
thesis, and benchmark them on real search and rescue and industrial inspection
scenarios. We show that our approach is specifically suitable for these applications
and outperforms standard approaches.
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Zusammenfassung

Mikro-Luft-Fahrzeuge (MAVs) haben ein wachsendes Anwendungsgebiet für kom-
merzielle, industrielle und humanitäre Einsätz, aufgrund ihrer Agilität, Bewegungs-
freiheit im 3D-Raum und relativ niedriger Kosten. Bisher werden diese Fluggeräte
jedoch in einem von zwei Modi eingesetzt: entweder im manuellen Flug durch er-
fahrene Piloten oder in der Ferninspektion mit Hilfe von GPS-Wegpunkten. Damit
diese Roboter menschliche Bediener bei Such- und Rettungseinsätzen (S&R) und
bei der industriellen Inspektion unterstützen können, müssen weitaus mehr Her-
ausforderungen bewältigt werden, als durch bisherigen Lösungen abgedeckt wird.

Inbesondere diese beiden Anwendungsgebiete sind problematisch. Erstens haben
diese Szenarien in der Regel nur teilweise bis gar kein GPS-Abdeckung, sodass alle
Zustandsschätzungen vollständig auf On-Board-Sensing basieren müssen. Zweit-
ens, insbesondere für Such- und Rettungseinsätze oder bei komplexeren indus-
triellen Inspektionen wie bei der Wartung von Kesseln, ist die Kommunikation mit
einer Bodenstation nicht immer verfügbar. Daher muss die gesamte Verarbeitung
an Bord durchgeführt werden und der Roboter muss sich intelligent verhalten,
wenn keine externen Befehle gesendet werden. Ebenso können wir uns nicht auf
einen qualifizierten Piloten verlassen, weshalb der gesamte Low-Level-Betrieb vom
MAV selbst durchgeführt werden muss. Schliesslich muss ein MAV in der Lage sein
sehr nahe an Hindernissen und in unstrukturierten Umgebungen sicher zu arbeiten
und mit nützlichen Daten, z.B. einer 3D Karte für den menschlichen Bediener
zurückzukehren.

Für ein geeignetes MAV-basiertes System, welches diese Anforderungen erfüllt,
müssen autonome Kartierung und Pfadplanung Hand in Hand gehen. Der Grossteil
der Literatur beschäftigt sich mit den nötigen Einzelfunktionen, wie z.B. on-board
Zustandsschätzung und genauer Regelung der Systeme.

Diese Arbeit beschäftigt sich mit den weiter gefassten und integrativen Auf-
gaben der Kartierung und dem Planen kurzer bzw. langer Pfade. Unser Ansatz
basiert auf einer neuartigen Kartendarstellung, die speziell auf die Bedürfnisse von
Planungs- und Inspektionsaufgaben zugeschnitten ist und Planungsalgorithmen
verwendet, die alle verfügbaren Informationen dieser Karten nutzen. Im Folgen-
den beschreiben wir die spezifischen Beiträge dieser Dissertation.

Zuerst schlagen wir eine schnelle lokale Umplanungsmethode vor, welche lokale
Trajektorienoptimierung an Polynom-Splines nutzt, um dynamisch zulässige Tra-
jektorien kollisionsfrei zu realisieren. Diese Methode ermöglicht es uns, konservativ
zu planen, d.h. unbekannter Raum wird als belegt betrachtet und mit bis zu 25 Hz
umgeplant. Da die Methode jedoch auf Hindernisgradienten basiert, benötigt sie
eine Kartendarstellung, die in der Lage ist, Entfernungen zu Hindernissen inkre-
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Zusammenfassung

mentell zu speichern und zu aktualisieren.
Um diesem Bedürfnis gerecht zu werden, entwerfen wir eine flexible Karten-

repräsentation namens voxblox, die auf dichten Voxel-Gittern basiert, die Signed
Distance Fields (SDFs) speichern. Wir schlagen eine Methode zur inkrementellen
Aktualisierung von Euclidian Signed Distance Fields (ESDFs) aus Truncated Signed
Distance Fields (TSDFs) vor, die traditionell für die 3D-Rekonstruktion verwendet
werden. Wir erweitern TSDF-basierte Methoden, um sie besser für grosse Vox-
elgrössen geeignet zu machen, die für Echtzeit-Planungsanwendungen notwendig
sind. Dieser Planungsansatz ermöglicht es uns, hochpräzise colorierte Meshes zur
Unterstützung menschlicher Bediener zu erstellen, während wir gleichzeitig eine
Kartendarstellung beibehalten, die für Kollisionskontrollen in einem einzigen Look-
up Gradienteninformationen zu Hindernissen liefert und geringere Rechenzeiten als
bisherige Methoden hat. Als nächstes adressieren wir die Probleme, mit denen
diese beiden Methoden in besonders ungeordneten Umgebungen angewendet wer-
den: Lokale Minima, wenn kein Weg zum Ziel sichtbar ist. Wir schlagen vor, eine
lokale Explorationsstrategie zu verwenden, die die nächsten Positionen auswählt,
die den Explorationsgewinn maximieren und die Entfernung zum Ziel minimieren,
wenn die lokale Planung scheitert. Wir zeigen, dass dies unsere Erfolgsraten auch
in Umgebungen, die bis zu 50

Um die in unserer Kartendarstellung verfügbaren Informationen weiter zu nutzen,
schlagen wir eine deterministische topologiebasierte Planungsmethode vor. Wir
nutzen die Eigenschaft, dass Kanten im ESDF im Generalized Voronoi Diagram
(GVD) Flächen sind und können daraus maximal freie Bereiche extrahieren. Wir
fügen dann einen Graph an diese Kanten an und erzeugen somit eine kompakte
Darstellung der Umgebung, mit der wir eine Grössenordnung schneller planen kön-
nen als mit dem schnellsten sampling-basierten Ansatz. Darüber hinaus funktion-
iert unser Ansatz mit engen Passagen, mit welchen sampling-basierte Methoden in
der Regel Schwierigkeiten haben.

Schliesslich demonstrieren wir ein vollständiges System mit allen Komponen-
ten dieser Arbeit, und evaluieren es in realen S&R und industriellen Inspektions-
Szenarien. Wir zeigen, dass unser Ansatz speziell für diese Anwendungen geeignet
ist und gängige Ansätze übertrifft.
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Preface

This doctoral thesis is organized as a cumulative thesis, bringing together multiple
previously-published works, which are attached at the end of the report.

The core purpose and ideas of the thesis, including a thorough discussion of
the motivation, are presented in Chapter 1. Each contributing paper is discussed
in detail, including its context, contributions, and interrelations to other work in
Chapter 2. Finally, we summarize the achievements of the papers presented in
this thesis and suggest avenues for future work and future research directions in
Chapter 3.

1





Chapter1
Introduction

Micro-Aerial Vehicles (MAVs) have enjoyed great attention in the research com-
munity, and in recent years, stunning success as commercial products for consumer
markets. Their dynamics make them widely applicable in a range of scenarios: fast
dynamics and high agility allow them to move quickly and freely in 3D space, easily
reaching places difficult for people to inspect. They pose an interesting problem for
research because their advantages make them difficult to control: the systems are
inherently unstable, and require fast, active stabilization to stay airborne. Having
a flying system also limits the potential payload significantly, giving us a system
that requires very high-speed processing but can only lift very limited computing
payloads. This creates a very rich and interesting area of research, which this thesis
aims to contribute to.

Consumer applications of drones have mostly focused on “selfie-drones”: aerial
vehicles that are able to track and follow a target, with a high-resolution camera
on a gimbal for recording video footage, especially of sports. At the beginning of
this thesis, commercial platforms were only capable of GPS-based navigation, in
open space with no collision avoidance. While this has changed over the course
of this PhD, with the DJI Mavic1 and Skydio R12 both able to navigate using
visual-inertial odometry in GPS-denied environments, and perform reactive col-
lision avoidance in uncluttered environments, there are still many use-cases not
covered by commercial systems, such as close-to-structure inspection and higher-
level autonomous operation.

Rather than focusing on the consumer markets as described above, we want to
create a navigation framework that can be useful for two core areas of application:
search and rescue (S&R) and industrial inspection. Search and rescue is a particu-
larly difficult environment, where no a priori knowledge of what the environment
could look like is available and it is dangerous for humans to enter. For industrial
1www.dji.com/mavic
2www.skydio.com
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1 Introduction

(a) (b) (c) (d)

Figure 1.1: Examples of various scenarios this thesis focuses on: (a) and (b) are
at a simulated firefighters training area at Wangen an der Aare in Switzerland, (c)
is in a forest in Zürich, Switzerland, and (d) is in the Machine Hall of ETH Zürich.

inspection, more prior information may be available, but inspections should be
carried out over long periods of time, when the interiors could change. Both ap-
plications require operating in cluttered, at least partially unknown environments,
and very close to structure.

We aim to address these needs by designing mapping and planning solutions that
work together to allow fast, on-board, safe navigation system, in cluttered, GPS-
denied environments. We build on existing solutions for trajectory tracking control
by using non-linear MPC [42, 43] and local state estimation by using visual-inertial
odometry [7, 56]. Instead, we focus on dense 3D mapping and local planning for
collision avoidance through these maps.

Much of the focus of this thesis is exploring the interrelation between mapping
and planning: how a map representation can be suited to the needs of planning,
and how planners can exploit all the information available in the map for better
planning performance. We pay special attention to safety and planning conser-
vatively – that is, not making any optimistic assumptions about unknown space.
We aim to address the needs of navigation in cluttered environments, with special
focus on search and rescue, industrial inspection, and forest flight.

1.1 Motivation and Objectives

The main objective of this thesis is to create a full local navigation system that
is able to create dynamically-feasible timed trajectories for an MAV based on raw
dense sensor data and pose estimation. We approach this by presenting two main
components: (i) a safe, local navigation planner that is conservative with respect
to observed space, and (ii) an environment representation that is both fast enough
to run on-board and is designed to be used for planning, explicitly storing known
and unknown space. From our target applications, we additionally have the re-
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1.1 Motivation and Objectives

(a) (b)

Figure 1.2: Two of the MAV systems used for this thesis, including various sensor
configurations. (a) is an Asctec Firefly, with a dual-core 1.7 GHz i7 CPU and a
stereo VI Sensor [78] as the only perception. (b) is a custom-built system based on
the DJI FlameWheel F550 frame, with an Intel NUC on-board, and outfitted with a
VI Sensor, an Intel D400 RGB-D sensor, a thermal camera, and a higher-resolution
downward-facing camera.

quirements of operating close to structure and in very cluttered environments.
Fig. 1.1 shows examples of the kind of environments we want to be able to

safely navigate in. Subfigures 1.1a and b show examples of realistic scenarios for
post-earthquake search and rescue, c shows an outdoor GPS-denied forest scenario,
and d shows an industrial inspection scene. All of these require safe navigation in
complex, cluttered environments.

Furthermore, we have the following specific requirements from the systems side
– as our platforms, shown in Fig. 1.2, have low payload, vision-based sensing, and
limited computational ability.

GPS-Denied Navigation Since our required scenarios are a mix of indoor and out-
door scenes, and some outdoor GPS-denied environments like the forest in
Fig. 1.1c, we cannot rely on external global positioning. Instead, we can only
estimate the system’s pose locally from on-board sensors, which is prone to
slow drift over time. The proposed solution must be able to remain safe in
the presence of drift.

Vision-Based Sensing Due to the low payload of MAVs, they are most often out-
fitted with cameras as the main sensing modality, as they are a rich sensors
with very low power and payload requirements. While cameras work incred-
ibly well for fast state estimation, it is more difficult to extract dense data
necessary for planning. Both the stereo vision setup and RGB-D sensors
shown in Fig. 1.2 suffer from low field of view and limited sensing range.
This means our algorithms have to account for most of the scene being out
of the field of view of the platform.

5



1 Introduction

Conservative Planning Especially due to the low field of view of the vision sensor,
we cannot trust that unobserved areas of the environment are free. This
becomes an increasingly unsafe assumption as the environment becomes more
cluttered. Therefore, we can only safely traverse space that we have observed
as free.

High Rate Replanning As we assume no a priori knowledge of the environment
and treat unknown space conservatively, to make any progress toward a goal,
the system must replan often. We aim for a replan rate of approximately 4
Hz, which given a 10 meter sensing range for our sensor, allows us to safely
move at a maximum safe speed of 10 m/s.

Limited Computation To be useful for Search and Rescue operations, the MAV
must be able to behave intelligently even with communication loss or very
limited bandwidth. Therefore, all processing must be done on-board. Our
systems have Intel x86 CPUs that are comparable to a standard laptop and
have no embedded graphics, so all processing should be CPU-only.

Assistance to Human Operators Finally, since we do not aim to solve all problems
related to robot autonomy, the system should aim to complement and assist
human operators rather than replace them. This entails having map repre-
sentations that are easy for humans to parse, easy ways to input complex
commands, and leaving the high-level decision making to people.

1.2 Approach

Our approach presents contributions in two main areas: planning that exploits
map information, and mapping that is specifically designed for planning applica-
tions.

For planning, we aim to solve two sub-problems: first, local collision avoidance,
and later, global planning. Our approach for local collision avoidance centers on
using local trajectory optimization on polynomial splines [81], called loco. We begin
with an initial straight-line guess and then iteratively deform the trajectory to push
it out of collision, similar to Ratliff et al. [93], but taken to the continuous-time do-
main with different dynamic constraints. This approach is fast and yields smooth,
dynamically-feasible trajectories. The downside is that this local optimization re-
quires (or at least benefits from) obstacle distance and gradient information. While
the required distance fields are possible to compute from existing occupancy grid
methods such as Octomap [38], even incremental solutions require having a fixed-
size upper bound on the map size and computing the distances to the edge of the
map [51].

To allow easy planning, we design a map representation explicitly for storing and
maintaining distance fields. Our representation, named voxblox, has fast access
times, can grow dynamically in size, and can handle many different types of data
stored in a voxel grid [83]. Based on KinectFusion [74], we use Truncated Signed
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1.2 Approach

Distance Fields (TSDFs) to incorporate distance measurements. We then maintain
full Euclidean distances to obstacles using incremental Euclidean Signed Distance
Field (ESDF) building based on the incremental occupancy approach of Lau et
al. [51]. Constructing the ESDFs out of TSDFs rather than occupancy information
increases our accuracy substantially, and allows us to model detail in objects finer
than the voxel resolution.

We integrate our local planning and mapping approach together to create a
system specifically suited for safely navigating in initially unknown environments,
which can incrementally and quickly update a dynamically-growing map, and plan
paths through observed free space. Since we treat unknown space very con-
servatively (only areas that we have explicitly observed as free are considered
traversable), the local optimization is prone to falling in local minima and be-
ing unable to find a path that makes progress toward the goal. This problem is
much worse in cluttered environments, where many obstacle occlusions make the
visible traversable space very small. To overcome this, we propose to employ a
local exploration strategy when the normal path-planning method fails [85]. We
design an approach that combines both goal-seeking and maximizing exploration
gain to allow us to first explore areas that are likely to lead to the goal. This
greatly increases the overall success rate of our planning, especially in long scenar-
ios. Additionally, we show that this outperforms the traditional method of using
a conservative local planner with an optimistic (treating unknown space as free)
global planner.

Finally, we examine methods to exploit the information stored in an ESDF map.
We take the case of global planning, for instance for repeat inspections of the
same industrial environment or multiple missions in the same search and rescue
scene, where a global map is available. We exploit the property that the ridges of
the ESDF form the faces of the generalized voronoi diagram (GVD) [105], which
contains the points that are maximally removed from obstacles. We then perform
filtering and thinning operations, which allow us to create consistent diagrams even
with changing voxel sizes and different noise densities, and fit a sparse topological
graph to this diagram. This allows us to perform global planning much faster than
possible with sampling-based methods, while maintaining a deterministic planning
graph that compactly represents the free space in the environment [86].

This complete system, comprising local planning, global planning, and mapping
is summarized in [84] and shown in Fig. 1.3 There has been substantial work in inte-
grating this into a fully-running platform, running everything online and on-board,
and some special considerations in terms of control structure, state estimation, and
localization.
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Chapter2
Contribution

This chapter will detail the contributions of each of the papers presented as part
of this cumulative thesis. We will describe the context of the work at the time of
publication, novel contributions, and finally how the paper relates to the rest of
the thesis and how it has impacted the field.

We present the papers in chronological order, as the development of the algo-
rithms went organically between developing planners that exploit map information,
then improving map representations to inform planning algorithms, and continuing
this cycle.

2.1 Paper I

Helen Oleynikova, Michael Burri, Zachary Taylor, Juan Nieto, Roland Siegwart,
and Enric Galceran, “Continuous-Time Trajectory Optimization for Online UAV
Replanning”. In IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2016.

Context

This paper attempted to address a large gap in the MAV planning literature: fast,
safe, dynamics-aware online replanning. While many planning methods were avail-
able, most sophisticated ones focused on global planning and were too slow to be
used online in active replanning. One popular example is RRT*-based methods for
initial waypoint selection [44], and polynomial smoothing through these waypoints
to create a dynamically-feasible, smooth path [95]. While this method works well
even for planning on long, complex horizons, it takes several seconds to create a
complete path. A method addressing the same problem was published at a similar
time, using free-space corridor generation through an octomap to rapidly generate
trajectories [14]. However, their approach is optimistic rather than conservative:
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2 Contribution

unknown space is assumed to be free, and the replanning rate should be fast enough
to avoid collisions if previously unseen space happens to be occupied. However,
this is inherently unsafe, especially as environments get more cluttered. We aimed
to design an algorithm that is conservative, and will plan to stop in known free
space in order to always have the executed path be known collision-free.

Contribution

Our solution focuses on using local trajectory optimization with a polynomial spline
representation. We perform local optimization that has two competing costs: a
“smoothness” cost, where we aim to minimize some derivative of position of the
entire trajectory [66], and a collision cost, where the trajectory should attempt
not to collide with obstacles. It is an extension of CHOMP [93], which changes
the underlying trajectory representation to a continuous-time one (rather than
discrete waypoints), and converts it to a simple unconstrained optimization, as
opposed to augmented gradient descent in the original work. We also formulate
the collision cost as a line integral over the entire trajectory, allowing us to exploit
the smoothness of both the trajectory and the distance field representation. We
show very fast (40 ms) total reaction times, including incorporating data into a
map, updating the ESDF incrementally, and running the trajectory optimization,
which is much faster than previous work.

Interrelations & Dissemination

This paper is the building block of all subsequent work in this thesis. Paper
III [83] later extends this work by changing the underlying map representation to
an ESDF that can grow dynamically (in this work, there was a fixed maximum
size from the beginning). The original motivation behind creating a new map
representation was to allow the ESDF necessary for this optimization method to
grow dynamically with no fixed maximum size. Paper IV [85] extended this by
introducing an intermediate goal-finding strategy, which attempts to overcome
the high failure rate of the local optimization (due to falling into infeasible local
minima).

This paper has also had long-lasting impact on the community. The code is avail-
able online and open-source1, including the forest flight sample simulation maps2.
Others in the community have built on our approach in various ways. Usenko et al.
have extended the approach to use B-splines rather than Hermetian splines, using
our evaluation framework and a custom circular buffer map representation [109],
showing a significant speed-up in optimization time. Lin et al. follows our general
approach to locally optimize collision-free trajectories in a two-stage optimization,
but improves success rate substantially by initializing with a free path found by
A* [57]. Finally, Morell et al. propose ASTRO, which is similar approach using
ESDFs to directly optimize collision costs locally on a polynomial spline [71], but

1github.com/ethz-asl/mav_voxblox_planning
2github.com/ethz-asl/forest_gen
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2.2 Paper II

uses constructed free-space corridors from the ESDF rather than planning directly
in the map.

2.2 Paper II

Helen Oleynikova, Alex Millane, Zachary Taylor, Enric Galceran, Juan Nieto and
Roland Siegwart, “Signed Distance Fields: A Natural Representation for Both
Mapping and Planning”. In RSS Workshop on Geometry and Beyond, 2016.

Context

This paper suggests a better map representation for planning, based on the needs
in Paper I [81]. It aims to bring together ideas from both robot planning literature,
which in 3D most often uses Octomap [38], and 3D reconstruction and graphics,
which in recent years have been taken over by Truncated Signed Distance Field
(TSDF) approaches like KinectFusion [74].

The idea behind this work is to suggest that perhaps probability-based voxel
grids are not the best representation for planning, and that signed distance fields
contain more useful information, such as storing both uncertainty (encoded as the
weight) and distance to obstacles. TSDFs hold a voxel grid that, for each voxel,
stores both a weight and a distance. They are created by ray-casting pointcloud
data into a grid, and assigning positive distance values to voxels in front of the
surface, and negative distances behind. These distances are calculated in the pro-
jective space – meaning the distance along the ray from the sensor center to the
surface. As such, they always overstimate the true Euclidean distance. Therefore,
to minimize error, the TSDF holds distances only up to a small truncation distance
around the surface.

Euclidean Signed Distance Fields (ESDFs), on the other hand, store true Eu-
clidean distance to obstacles. Our paper explores initial ideas on how to create full
ESDFs from TSDFs.

Contribution

This is a workshop paper about a new way of representing maps, and as such,
the main contributions are the ideas to combine building TSDF and ESDFs in the
same map. Since both TSDFs and ESDFs are distance fields that encode distance
to obstacles, the most naive idea is to simply not truncate the TSDF.

We show results of removing this truncation and then apply multiple strategies
for fusing scans together, on sample simulated scenarios in 2D. We show that
if we simply take the mean of all distance values (as is normally done in the
TSDF fusion), we get large systematic errors and an unusable distance field. This
is due to the property of projective distances strictly overestimating Euclidean
distances, and that this problem becomes much worse the farther the voxel is from
the surface boundary. We also attempt another fusion method which simply takes
the minimum of all observed distances, which substantially improves the usability
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2 Contribution

of the map but still leaves many discontinuities in the field and is much more
susceptible to noise.

Finally, the strategy that we propose at the end, which has the lowest error, is
to create a hybrid E/TSDF, which uses TSDF values near surface boundaries and
computes the ESDF values using normal wavefront propagation techniques further
from the surface.

Interrelations & Dissemination

This workshop paper presented the initial ideas and analysis that led to Paper
III [83], which suggests a full method to compute this hybrid E/TSDF, presents
error statistics and theoretical bounds on error, and shows a full system able to
use this map in 3D, online, and on-board an MAV.

2.3 Paper III

Helen Oleynikova, Zachary Taylor, Marius Fehr, Roland Siegwart, and Juan Ni-
eto, “Voxblox: Incremental 3D Euclidean Signed Distance Fields for On-Board
MAV Planning”. In IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2017.

Context

This paper aimed to combine the best of both worlds for 3D reconstruction and
planning maps for 3D map representations. We wanted to create a system that
leveraged recent advances in 3D mapping for high-resolution reconstruction, namely
KinectFusion [74] and other TSDF-based approaches, with the information neces-
sary or helpful for planning, which is free-space information and distance infor-
mation to obstacles in free-space. Traditionally, Octomap [38] has been used for
the vast majority of 3D planning applications, but has many shortcomings, most
notably look-up speed and aliasing effects. We aim to create a map representation
that is both hand-tailored for planning applications, and has the advantages of
TSDFs: namely, being easy to visualize and parse for a non-expert, and storing
information to a resolution higher than the voxel size.

Contribution

We propose three core ideas to fulfill our goals of a flexible SDF-based map repre-
sentation suitable for planning, which we name voxblox :
1. a generic dense voxel representation that supports multiple “layers”, storing dis-
tance, occupancy, or semantic information and using voxel hashing [76] as the basic
representation,
2. a pointcloud integration algorithm that is better suited for larger voxels, speeding
up integration times by up to 20x over naive raycasting,
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2.4 Paper IV

3. and an integration scheme for incrementally generating ESDFs out of TSDFs,
adapted from the incremental method proposed by Lau et al. [51], and showing
higher accuracy than methods based on occupancy information.

This paper takes the ideas from Paper II [82] and creates a full usable 3D system,
shown running online an on-board an MAV with real sensor data, and then used
for planning using the method presented in Paper I [81]. Additionally, for the
applications to robot path-planning, we offer an analysis of the impact of all the
simplifying assumptions we use in computing the ESDF, and suggestions on error
bounds to apply in selecting safety margins.

Interrelations & Dissemination

Similar to how Paper I [81] was the basis of all the planning methods in this thesis,
this is the core map representation we use for our remaining work. Specifically,
Paper IV [85] uses voxblox as the core map representation, exploiting information
in both the TSDF and ESDF to track unknown space, and Paper V [86] exploits
the properties of the ESDF to generate Generalized Voronoi Diagrams from maps,
and from there create sparse graphs that can be used for fast global planning.

This work was made available open-source since publication3, and has since
enjoyed a large amount of improvements, new features, and support from the au-
thor and collaborators, most notably including faster integration methods and an
implementation of pointcloud-to-SDF ICP for fine pose refinement.

Others have also built on voxblox as a mapping framework. Blochliger et al.
uses voxblox for topological mapping based on previous trajectories through the
environment [5]. Millane et al. extends voxblox to use sub-maps for consistent
dense mapping in the presence of loopclosures [68]. Furrer et al. uses voxblox as a
dense representation for object models, and uses the properties of signed distance
fields to fuse and verify correct alignment of 3D models [29].

Finally, Florence et al. has evaluated their proposed sparse map representation
against our mapping framework as a standard solution [23].

2.4 Paper IV

Helen Oleynikova, Zachary Taylor, Roland Siegwart, and Juan Nieto, “Safe Local
Exploration for Replanning in Cluttered Unknown Environments for Micro-Aerial
Vehicles”. In IEEE Robotics and Automation Letters (RA-L), 2018.

Context

This paper aims to overcome the inherent downsides of conservative, local tra-
jectory optimization methods for collision avoidance: the high failure rate from
falling into local minima. This is a particular problem in very cluttered envi-
ronments with a narrow field of view: often, there does not exist a visible path
3github.com/ethz-asl/voxblox
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towards the goal that passes through only known space. We explore different in-
termediate goal-finding strategies when naive local pathfinding fails, in order to
increase overall success rate to get to the goal. One key contribution of this work
is that it deals with significantly denser/more cluttered environments than other
approaches. Where other methods that evaluate on randomized maps end their
experiments at 10% obstacle density [81], [14], that is where our evaluations begin,
and we do experiments on up to 50% obstacle density. Coupled with a narrow field
of view from our vision-based sensor, we attempt to tackle a very difficult problem.

Contribution

The approach we take to overcome issues with local navigation in cluttered, mostly
unseen environments is to borrow concepts from exploration literature. We ana-
lyze multiple potential intermediate goal finding strategies, which select shorter-
term goals when no path toward the global goal can be found, including random,
RRT [44], and next-best-view planner (NBVP) [4]. Our proposed method is a
simplified version of the evaluation exploration that NBVP proposes: We sample
multiple near-by points and choose the one that maximizes both potential explo-
ration gain and progress towards the global goal. We found that our strategy was
faster to evaluate and increased the success rate of the overall planning problem by
up to 70% over not selecting intermediate goals. The complete replanning system
is evaluated on a real platform in a variety of cluttered environments, including an
office space and multiple forest scenes.

Interrelations & Dissemination

This paper combines Paper I [81] and Paper III [83], fully taking advantage of
the information available in the voxblox TSDF and ESDF maps to improve local
planning. Mostly it aims to overcome a crucial shortcoming in the local continuous
optimization approach, where it frequently fails in very cluttered environments
when no path through the known space toward the goal is seen. The main finding
is that optimistic global planners do not work very well when the environment gets
more cluttered, and more intelligent strategies are necessary in such cases. The
approach and evaluation benchmarks are available open-source4.

2.5 Paper V

Helen Oleynikova, Zachary Taylor, Roland Siegwart, and Juan Nieto, “Sparse 3D
Topological Graphs for Micro-Aerial Vehicle Planning”. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2018.

4github.com/ethz-asl/mav_voxblox_planning

14

github.com/ethz-asl/mav_voxblox_planning


2.5 Paper V

Context

Rather than focusing on local planning and collision avoidance like other papers in
this thesis, here we focus on global planning through a previously-known map. We
exploit the properties of ESDFs to create deterministic, 3D sparse topology graphs
of the free-space to significantly speed up planning. There has been extensive
literature on creating sparse topologies of 2D spaces before [108], [52], [41], [58].
However, literature in 3D has been comparatively limited, and either depends
on the trajectory used to generate the map [5] or has restrictions on maximum
clearance between obstacles [15]. We aim to extend similar methods to what has
been done in 2D, exploiting only the information in the map, and design a method
that is less sensitive to noise and differences in voxel sizes, but in full 3D.

Contribution

The work proposes a novel method to extract generalized voronoi diagrams, voxel
skeletons, and sparse topology graphs from ESDF maps (voxblox, in this case [83]).
We exploit the property of ESDFs that their ridges form the faces of a Generalized
Voronoi Diagram (GVD). While in 2D, a GVD creates lines that are equidistant
from obstacles, in 3D, it creates surfaces. Since we are interested in getting the
sparsest representation we can, we focus on how to extract sparse 3D graphs on
the edges of the GVD surface.

We use tools from the skeletonization literature [105] to deal with one of the
largest problems in GVD-based skeleton extraction: sensitivity to noise. Since we
deal with real noisy sensor data rather than perfect CAD models, this problem is
of significant interest.

We propose a filtering approach, new diagram removal templates, and other
techniques for counteracting both noise and resolution changes. We then build a
sparse graph, consisting of vertices and edges, from the thinned skeleton diagram
which we can use for planning. The size of this diagram remains relatively stable
regardless of underlying voxel size or noise level. Finally, we demonstrate how this
sparse graph can be combined with polynomial smoothing (based on [81], [85])
to quickly create dynamically feasible and collision-free trajectories through the
environment. The initial search through the sparse graph is orders of magnitude
faster than sampling-based methods such as RRT [44].

Interrelations & Dissemination

This work moves away from doing only local replanning to solving the global plan-
ning problem as well. The approach is significantly faster than RRT, and when
combined with path smoothing methods, leads to long, dynamically-feasible tra-
jectories that can be planned very quickly. Combined with the other papers in this
thesis, this gives us a complete mapping and planning system suitable for repeated
inspections and missions in the same environment, while still being able to cope
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2 Contribution

with local changes. The work is made available open-source5

2.6 Paper VI

Helen Oleynikova, Zachary Taylor, Alexander Millane, Roland Siegwart, and Juan
Nieto, “A Complete System for Vision-Based Micro-Aerial Vehicle Mapping, Plan-
ning, and Flight in Cluttered Environments”. In arXiv:1812.03892, 2018.

Context

The final paper in the collection is an unpublished technical report, summarizing
the complete system described in this thesis, including considerations from other
aspects such as control and state estimation.

It is similar in structure and purpose to two recent system papers from other
groups. The first, Lin et al. [57] presented a complete system, with special focus
on the state estimation, but uses a more standard occupancy grid approach for
mapping. Our work instead focuses on the interrelation of mapping and planning
(also with other components), chiefly addressing issues with narrow field of view
sensors in very cluttered environments.

More recently, Mohta et al. [69] published their system for the DARPA Fast
Flightweight Autonomy (FLA) competition. Their focus is also on GPS-denied
navigation, but with a focus on flying as fast as possible. A core difference is the
sensor suite: they use a 360◦ field of view LIDAR, which removes many of the
challenges with narrow field of view sensing that we attempt to tackle in our work.
Their mapping approach also differs substantially: they keep only a local map,
and attempt to decompose free-space in this map into overlapping convex regions,
which works very well in sparser environments but does not scale to very cluttered
areas. Their global map is also only kept in 2D in order to be able to push the
robot out of dead ends, while we keep a complete global map to be able to perform
full 3D global planning.

Ultimately, the most suitable system depends on sensor suite and application.

Contribution

The core contribution of this work is to present the complete system, from hardware
and sensors, to state estimation and control, to local and global mapping and
planning. The aim to serve as a reference for others attempting to replicate the
system and ensure that all software is available open-source.

In addition to describing the complete system, we extend our previous work
in sparse skeleton topology to significantly speed up sparse graph generation and
improve quality of the graph, and have a more thorough discussion of how this
graph can be used for planning. We additionally extend our local collision avoid-
ance method, Loco, to also function as a path smoothing method – allowing it to

5github.com/ethz-asl/mav_voxblox_planning
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2.7 List of Publications

take a list of waypoints from a global planner and output a dynamically-feasible,
collision-free path.

Finally, we focus on benchmarking various global planning methods and path
smoothing methods together. The datasets we test on are optimized global maps
from three real search and rescue and industrial inspection scenarios: two at the
military rescue training ground at Wangen an der Aare in Canton of Bern, Switzer-
land, and one from the ETH Machine Hall in Zürich. We show that our proposed
topological skeleton-based global planning and local continuous path smoothing
have computation time and success rate advantages over competing methods.

Interrelations & Dissemination

This paper attempts to bring together all of the previous work into one complete
system, and specifically extend the local planning method in Paper I [81] to be
suitable for path smoothing, provide extra considerations about how to treat un-
known space in ESDFs from Paper III [83], and siginfiicantly speed up and improve
the graph construction method presented in Paper V [86]. Though it is currently
only available on arXiv, we intend to extend this work with more results on local
planning in completely unknown scenes and additional real-world experiments, and
then submit to a journal.

2.7 List of Publications

There are multiple publications that have resulted directly from the thesis, or
received significant assistance from the author. They are sorted by first author
and by year.

2.7.1 Publications Included in this Thesis
• H. Oleynikova, M. Burri, Z. Taylor, J. Nieto, R. Siegwart, and E. Gal-

ceran. Continuous-time trajectory optimization for online uav replanning.
In IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2016

• H. Oleynikova, A. Millane, Z. Taylor, E. Galceran, J. Nieto, and R. Sieg-
wart. Signed distance fields: A natural representation for both mapping and
planning. In RSS Workshop on Geometry and Beyond, 2016

• H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart, and J. Nieto. Voxblox:
Incremental 3d euclidean signed distance fields for on-board mav planning.
In IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2017

• H. Oleynikova, Z. Taylor, R. Siegwart, and J. Nieto. Safe local exploration
for replanning in cluttered unknown environments for micro-aerial vehicles.
IEEE Robotics and Automation Letters, 2018
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• H. Oleynikova, Z. Taylor, R. Siegwart, and J. Nieto. Sparse 3d topological
graphs for micro-aerial vehicle planning. In IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS). IEEE, 2018

• H. Oleynikova, Z. Taylor, A. Millane, R. Siegwart, and J. Nieto. A complete
system for vision-based micro-aerial vehicle mapping, planning, and flight in
cluttered environments. arXiv preprint arXiv:1812.03892, 2018

2.7.2 Other Publications
• H. Oleynikova, M. Burri, S. Lynen, and R. Siegwart. Real-time visual-inertial

localization for aerial and ground robots. In IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS). IEEE, Sept 2015

• M. Burri, H. Oleynikova, M. W. Achtelik, and R. Siegwart. Real-time visual-
inertial mapping, re-localization and planning onboard mavs in unknown
environments. In IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), Sept 2015

• M. Burri, J. Nikolic, H. Oleynikova, M. W. Achtelik, and R. Siegwart. Max-
imum likelihood parameter identification for mavs. In IEEE International
Conference on Robotics and Automation (ICRA), pages 4297–4303. IEEE,
2016

• A. Bircher, M. Kamel, K. Alexis, H. Oleynikova, and R. Siegwart. Receding
horizon “next-best-view" planner for 3d exploration. In IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2016

• A. Bircher, M. Kamel, K. Alexis, H. Oleynikova, and R. Siegwart. Receding
horizon path planning for 3d exploration and surface inspection. Autonomous
Robots, pages 1–16, 2016

• A. Millane, Z. Taylor, H. Oleynikova, J. Nieto, R. Siegwart, and C. Ca-
dena. C-blox: A scalable and consistent tsdf-based dense mapping approach.
In IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2018

• C.Witting, M. Fehr, R. Bähnemann, H. Oleynikova, and R. Siegwart. History-
aware autonomous exploration in confined environments using mavs. In
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2018

• F. Ruetz, E. Hernández, M. Pfeiffer, H. Oleynikova, M. Cox, T. Lowe, and
P. Borges. Ovpc mesh: 3d free-space representation for local ground vehicle
navigation. arXiv preprint arXiv:1811.10266, 2018
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2.8 List of Supervised Students

• C. Papachristos, M. Kamel, M. Popović, S. Khattak, A. Bircher, H. Oleynikova,
T. Dang, F. Mascarich, K. Alexis, and R. Siegwart. Autonomous exploration
and inspection path planning for aerial robots using the robot operating sys-
tem. In Robot Operating System (ROS), pages 67–111. Springer, 2019

2.8 List of Supervised Students

The author also supervised a number of students during the doctoral studies, which
constituted a significant portion of the author’s time. We give a list of the stu-
dents and their project names below, and give citations to those works which have
resulted in a publication.

Master Thesis
Master student, 6 months full time

• Sebastian Inderst (Fall 2017): “Online Planning for UAV in Unknown Clut-
tered Environments”

• Fabio Ruetz (Spring 2018): “Local Navigation on Pointclouds” [97]

• Nils Funk (Spring 2018): “Safe Motion Planning in Real-time Mapped Eu-
clidean Signed-distance Fields”

• Jaeyoung Lim (Fall 2018): “High-Speed Autonomous Navigation in Unknown
Environments”

• Victor Reijgwart (Fall 2018): “Real-time, Consistent, Volumetric SLAM On-
board MAVs for the MBZIRC 2020 Challenge”

Semester Thesis
Master student, 3-4 months part time

• Dimitris Gryparis (Fall 2015): “High Level Control of an MAV through
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Chapter3
Conclusion and Outlook

This thesis provides a complete system, including mapping and planning, for local
collision avoidance in cluttered, unknown environments on-board MAVs. We fo-
cused on light-weight solutions that are able to run in real-time onboard, trading
off global optimality for execution speed. The core contributions of this thesis can
be split into 3 categories:

Local Continuous Trajectory Optimization We proposed a method that uses gradient-
based local trajectory optimization (named loco) to create smooth, collision-
free, dynamically-feasible polynomial splines through the environment. A
key distinction between our method and other approaches in literature is
that we are completely conservative: all trajectories end in known free space.
We also investigated ways to improve the success rate of this method in very
cluttered environments, as many occlusions make it unlikely to find a path
toward the goal. We proposed a local exploration strategy that can be em-
ployed when the underlying optimization fails, greatly increasing our success
rate in reaching the goal in complex environments.

Signed Distance Field Mapping Incorporating the requirements of our planning
strategy, we designed a flexible map representation, called voxblox, built on
signed distance fields. New data is incorporated into a TSDF layer, and we
propose fast ways to handle large voxel grids, which are usually employed
for planning applications but not for 3D reconstruction. We then describe a
method for generating accurate and fast incremental ESDFs from this TSDF
layer, and show that we have lower errors than doing the same from occu-
pancy maps. This flexible mapping framework has been used for a variety
of applications, such as MAV planning, object reconstruction, and ground
robot navigation.

Global Topology Extraction Finally, we propose a way to exploit our map repre-
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3 Conclusion and Outlook

sentation to speed up global planning by orders of magnitude for previously-
known maps. We propose using the property of GVDs being the ridges in the
ESDF to compute a simplified, sparse topological graph of the traversable
free-space in the map. This sparse graph can then be used for very fast
global planning, and then combined with loco for generating smooth feasible
trajectories for the MAV.

3.1 Future Work

There are many avenues for future work, categorized into two sections below: plan-
ning and mapping.

3.1.1 Planning
Guarantees on Non-Collision In the current system, assuming a static environ-

ment, the MAV will never collide because trajectories are collision-checked
again before being sent to the robot. If a collision is detected, the old plan
(which always stops in known free space) is executed. However, this con-
straint could be put into the optimization problem as a hard constraint rather
than a soft constraint that is later checked for violation.

Convex Free-Space Estimates The topological graph from Paper V creates a sparse
graph through the traversable free-space, but could be further extended to
create convex free-space estimates of the entire traversable corridor by asso-
ciating distances with edges and vertices in the graph. This could make it
possible to better distinguish between two possible paths through the graph,
for instance to maximize clearance rather than minimize minimum distance.

Dynamic Obstacle Modeling and Avoidance Our approaches assume either a static
or a slowly dynamic environment, meaning that the scene changes slowly
enough that we are able to replan around it. However, operating in human
environments such as crowds would require explicit modeling of fast dynamic
objects such as people. We could extend our methods to detect and predict
dynamic motion, and incorporate these motion predictions into our planner.

Planning in Contact with a Manifold The TSDF representation implicitly assumes
that the world consists of continuous surfaces. We can use this for aerial ma-
nipulation applications, where many types of sensing require being in contact
with a surface to get measurement data, such as assessing material properties
for bridge inspection. We could use our maps to ensure that our plans always
stay in contact with the surface manifold.

Uncertainty-Aware Planning One natural extension is to consider various types of
uncertainties in the planning problem. There are many sources of uncertainty
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3.1 Future Work

in the system: for instance, state estimation uncertainty, inaccuracies in con-
trol, and noise in the map. We could add terms to the optimization problem
to not only minimize collision cost, but also consider how any of the three
uncertanties mentioned would evolve in different parts of the environment.

Active Perception Taking this one step further could mean planning not just for
collision avoidance, but to maximize some information gain. Examples could
include planning to minimize state uncertainty (by observing as many as pos-
sible feature-rich areas), to maximize reconstruction quality, or to facilitate
object detections.

Intelligent Exploration In Paper IV, we employ a standard sampling-based explo-
ration strategy: sample many free-space points in the environment, and select
that which gives the largest exploration gain. We coupled it with goal-seeking
behavior for our purposes, but there are many possible other ways to formu-
late the problem which would take advantage of dynamical constraints of the
platform (i.e., try to explore the space while minimizing turns), semantics of
spaces, or user-defined sub-objectives which would lead to more predictable
behavior for the exploration algorithm.

3.1.2 Mapping
Predicting Unknown Space Our work focuses on being safe and conservative in un-

known environments, and as such always plans to stop in known free space.
However, if we could use prior knowledge to predict the structure of unknown
space, we could plan faster and more dynamic motions into unexplored ar-
eas [96].

Uncertainty Estimates in Mapping Our mapping framework contains uncertainty
estimates in terms of weights, which contain information about how often a
point has been observed and how confident we have been in the measure-
ments based on the sensor model. However, what we do not consider is the
state estimate uncertainty at the sensor capture time. This could improve
reconstruction quality.

Multi-Resolution Dense Mapping We use a fixed voxel size, generally from 10 to 20
cm, for most of the planning applications. However, voxblox is designed to al-
low multiple layers of different voxel resolutions. Having this multi-resolution
map would be especially helpful for mobile manipulation applications, where
most of the environment only needs to be modelled coarsely, but surfaces on
which manipulation would take place would need a much higher-resolution
model.

Consistent Sparse and Dense Mapping One issue this thesis did not address is
how to bridge the gap between drifting local estimates and global localiza-
tions. One key problem is to keep the dense map consistent with a changing
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3 Conclusion and Outlook

pose graph in the presence of loop closures. Millane et al. [68] made the
first steps to addressing this problem by creating local submaps and intel-
ligently fusing them based on covariance estimates in the pose graph from
ORB-SLAM [73], but there is much work to be done to make this solution
general and more widely applicable.

Localization in Dense Maps In a similar vein, being able to do localization and
loop-closure in dense maps could remove the need for maintaining a sparse
landmark map along-side the dense map. There are also environments where
dense localization would be very informative, for instance areas of distinct
geometric structure but few appearance features.
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Paper I: Continuous-Time Trajectory Optimization for Online UAV Replanning

1 Introduction

Multirotor UAVs are gaining wide acceptance not only as research platforms, but
also for use in various real-world applications. Despite recent progress in on-board
state estimation, planning, and control, many current UAV systems still require
either an empty environment or perfect knowledge of one a priori. This limits their
safety and utility in unstructured, unknown environments.

In this paper, we focus on the problem of planning safe avoidance trajectories
for a multirotor helicopter (multicopter) in partially known or unknown environ-
ments. For example, use cases such as high-speed forest flight require low-latency
motion planning, as these environments are often densely populated and obstacles
frequently occlude one another [45].

Motion primitive methods have been a common choice for online replanning on
fixed-wing and multirotor platforms, since they can be executed quickly and each
“primitive" can be constructed to be dynamically feasible [91] [1]. However, such
methods require discretizing the state-space, which requires a huge motion library
or having the controller track from nearest start state, which [1] cites as being
responsible for up to 20% of the failures of their fixed-wing collision avoidance
system. For our approach, we overcome the need for state-space or time discretiza-
tion by choosing a continuous-time basis function to express our trajectories, and
plan from arbitrary points in the state space to allow greater flexibility for online
replanning.

We draw inspiration from trajectory optimization methods, such as CHOMP [116],
which locally minimize collision and smoothness costs on a discrete-time trajectory.
These planners are most commonly used for solving manipulation problems, where
most of the constraints are kinematic rather than dynamic. Kinematic constraints
can be simply expressed in discrete time, while dynamic constraints are more nat-
urally suited to continuous-time representations (and avoid unnecessary numerical
differentiation errors).

For UAV flight, it is advantageous to use continuous-time trajectory representa-
tions like polynomials [66]. These basis functions provide continuity up to a high
derivative, fast evaluation at any given time, and a very small number of param-
eters are needed to describe even long and complex trajectories. By varying only
one parameter (segment time), it is possible to ensure that these trajectories are
dynamically feasible given a simplified model of multicopter dynamics.

We propose a method of continuous-time trajectory optimization that allows the
real-time generation of safe avoidance trajectories. Our method uses a two-part
objective function, minimizing both a derivative of position and cost of collision
with the environment. We also show this method as integrated into a local replan-
ning system, where we use this local trajectory optimization to modify an initial
plan in the presence of previously unknown obstacles.

Our approach runs in real-time (under 50 ms for a complete planning cycle),
produces continuous-time trajectories, and is able to plan from and to arbitrary
states without a need for discretization in the workspace or state-space.

The contributions of this work are as follows:

28



2 Related Work

Figure 4.1: Results of an experiment showing our online local replanning system.
The UAV starts from behind the large mattress, which blocks its view of the iron
obstacle (left) behind. The planning goal is set inside the iron obstacle, but as
soon as the UAV observes that it is occupied, it replans to stop in front (planned
path seen in black). This shows the ability of our system to avoid newly-detected
obstacles and find feasible goal positions online.

• A continuous-time polynomial formulation of a local trajectory optimization
problem for collision avoidance, capable of running in real-time on a real
multicopter.

• A complete system with this as local replanning component, which continu-
ously computes collision-free trajectories around any newly detected obsta-
cles.

• Evaluation against existing trajectory optimization and planning algorithms,
and experiments on a real world platform (Fig. 4.1).

2 Related Work

3D path planning approaches for UAVs can be broadly classified into several cate-
gories, such as sampling-based methods (often followed by smoothing), trajectory
optimization methods, and method based on motion primitives. Here we discuss

29



Paper I: Continuous-Time Trajectory Optimization for Online UAV Replanning

motion planning methods related to our work, with emphasis in suitability for
real-time replanning with a dynamically updating map.

Sampling-based planning followed by a smoothing step which ensures dynamic
constraints are met is commonly used for 3D global planning on UAVs [95]. Ap-
proaches such as running RRT-based methods to generate a visibility graph, fol-
lowed by fitting high-order polynomials through the waypoints (graph vertices)
are shown to outperform traditional RRT methods in control space in terms of
execution time [95]. Recent speed-ups to the polynomial optimization have also
allowed such combined planners to run in almost real-time, taking only a few sec-
onds to generate long global plans [8]. While these methods generally produce
high-quality plans and are probabilistically complete, they are still too slow for
some online applications like real-time avoidance.

Closest to our proposed approach are discrete-time trajectory optimization meth-
ods. CHOMP, a trajectory optimization-based motion planner that revived interest
in this class of planner in recent years, uses a two-part objective function with a
smoothness and collision cost, and performs gradient descent with positions of dis-
crete waypoints as parameters [116]. In order to speed up convergence time to a
feasible plan, and ensure smoothness of the final solution, each gradient descent
step is multiplied by a Riemennian metric in order to ensure smooth, incremental
updates. Also based on trajectory optimization, STOMP is a gradient-free method
that samples candidate trajectories and minimizes a cost function by creating lin-
ear combinations of the best-scoring candidates [40]. A more recent advent in
trajectory optimization for collision-free planning breaks up the workspace into
free convex regions and performs Sequential Quadratic Programming (SQP) to
converge to a solution faster than the previous two methods [99]. Unfortunately,
this requires a pre-built map with pre-computed convex regions, which is difficult
to achieve in real-time.

Another approach to finding a low-cost path is to cheaply generate many path
candidates, and choose the best of the candidates based on an objective function.
This has been done for finding good polynomial trajectories to enable quadrotor
ball juggling [72], selecting locally lower-cost trajectories to track a global plan
in rough terrain [48], and choosing the safest trajectories for autonomous vehicles
in traffic [100]. However, these approaches rely on randomly-sampled trajectories
finding collision-free paths, which is an assumption that may not hold in very
cluttered environments.

An alternative is to solve the optimal control problem using mixed-integer pro-
gramming, where the workspace is again broken up into convex regions and a global
optimum including some linearized or simplified version of the system dynamics is
found [94], [50]. These approaches generally give dynamically-feasible and collision-
free trajectories, and it is even possible to make guarantees on their safety [2, 106],
however require a map representation which is very costly to compute and generally
have long runtimes (on the order of magnitude of minutes).

A class of methods commonly used for replanning are those based on motion
primitives. The state-space of the UAV is discretized into a state lattice with mo-
tion primitives forming edges in the graph, and standard graph search algorithms
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such as A* and AD* are used to find a feasible solution through this graph. This
has been shown in multicopters for navigating through partially known environ-
ments [64, 91] and on fixed-wing airplanes for navigating through a forest while
always safely being able to perform an emergency turn-around maneuver [90]. An-
other work shows flying high-speed through a forest using only on-board vision and
planning, picking collision-free next maneuvers from a motion library [1], where
they cite insufficient richness of the motion primitive library and discretization in
the start state as responsible for 50% of the experimental failures.

A drawback of these approaches is the need to discretize both the workspace
and state space (for example, motion primitives can only be generated for a finite
number of start velocities and end velocities), and the performance of the algorithm
is tightly linked to how many motion primitives are generated. Although we do
use a discretized workspace representation, our approach does not require such
discretization, nor does it require discretization in time or state-space, giving the
possibility of a wider range of solutions to be found.

3 Continuous-Time Trajectory Optimization Algorithm

Our approach focuses on optimizing high-degree polynomial trajectories made out
of several segments, as inspired by [95]. The trajectory is essentially a high-order
polynomial spline, with CD continuity, where D is the derivative we attempt to
minimize. These high-order splines are generally used for global trajectory genera-
tion, and have many advantages including the ability to specify velocities, acceler-
ations, and lower derivatives at waypoints, very fast evaluation times, and compact
representation of long and complex trajectories. While a closed-form solution ex-
ists to minimizing the sum of squared derivatives of such a spline, we expand the
problem to also contain information about the environment to generate a locally
optimal safe trajectory.

3.1 Problem Formulation
Instead of considering the full dynamics of a multicopter, we follow the work of
Mellinger and Kumar [66] to plan in a reduced space of differentially flat outputs.
This allows us to plan only in R3 and handle yaw separately.

Therefore, we will consider a polynomial trajectory in K dimensions, with S
segments, and each segment of order N . Each segment has K dimensions, each of
which is described by an Nth order polynomial:

fk(t) = a0 + a1t+ a2t
2 + a3t

3 . . . aN t
N (4.1)

with the polynomial coefficients:

pk =
[
a0 a1 a2 . . . aN

]>
. (4.2)

Given this trajectory representation, we seek to find the set of coefficients p∗

that minimize an objective function J . In our case, similar to CHOMP [116], our
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objective function has two components: a part that attempts to minimize a deriva-
tive D, Jd, and a part that attempts to minimize collisions with the environment,
Jc.

p∗ = argmin
p

wdJd + wcJc (4.3)

The following sections will present our choices of objective costs, Jd and Jc,
optimization method, and map representation to solve this problem in real-time.

3.2 Method
As described in [95], we express the polynomial not in terms of its N+1 coefficients,
but in terms of its end-derivatives to allow us to pose the derivative minimization
problem as an unconstrained quadratic program (QP), which is significantly faster
to solve than the constrained dual of this problem.

We can map between polynomial coefficients and end-derivatives using the A
matrix, and rearrange the end-derivatives into a free (dP ) and fixed (dF ) blocks
using a mapping matrix M:

p = A−1M

[
dF
dP

]
. (4.4)

The construction of matrices A, M (and R below) is addressed in [95]. The fixed
derivatives dF are given from the fixed end-constraints, like start and end velocities
and accelerations, while the free derivatives dP are the parameters we optimize.

In order to incorporate costs from collisions with the environment, we use a
minimization problem with two costs:

d∗P = argmin
dP

wdJd + wcJc (4.5)

where Jd is the cost due to integrated squared derivative terms (if minimizing snap,
integral of squared snap along the trajectory), Jc is the cost due to collisions, and
wd and wc are the weighing terms for each part of the cost.

The objective Jd can be calculated via the following:

Jd = d>FRFFdF + d>FRFPdP +

d>PRPFdF + d>PRPPdP (4.6)

where R is the augmented cost matrix, and RXX denotes the appropriate blocks
within this matrix.

The Jacobian of Jd with respect to the parameter vector can be computed as
follows:

∂Jd

∂dP
= 2d>FRFP + 2d>PRPP . (4.7)
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The derivative costs are independent for each axis, and are accumulated over all
K dimensions of the problem.

To represent collision costs, we use a line integral of the potential function c(f(t))
over the arc length of the trajectory.

Since our environment is represented as a discrete voxel grid (see Section 3.3),
we need to sample the trajectory and test at least one point within each voxel
along the trajectory.

To do so, we transform the trajectory from end-derivatives into workspace coor-
dinates. For each axis k at a time t:

T = [t0, t1, t2, ..., tN ] (4.8)
fk(t) = Tpk (4.9)
f(t) =

[
fx(t) fy(t) . . .

]
(4.10)

We also compute the velocity at each time t, using a matrix V, which maps a
vector of polynomial coefficients of a function to the polynomial coefficients of its
derivative.

vk(t) = ḟk(t) = TVpk (4.11)
v(t) =

[
vx(t) vy(t) . . .

]
(4.12)

The collision cost is then the line integral below, integrated over each segment
m (where tm is the end time of the segment):

Jc =

∫
S
c(f(t))ds

=

∫ tm

t=0
c(f(t))

∥∥∥ḟ(t)∥∥∥ dt
=

tm∑
t=0

c(f(t)) ‖v(t)‖∆t (4.13)

where c(f(t)) is the potential cost described in [116].
Finally, using the product and chain rules, we obtain the Jacobian for each axis

k:

∂Jc

∂dPk
=

tm∑
t=0

‖v(t)‖ ∇kc TLPP∆t+

c(f(t))
vk(t)

‖v(t)‖
TVLPP∆t. (4.14)

Here L = A−1M, or the complete mapping matrix between end-derivatives and
polynomial coefficients. LPP refers to the block of the right-side columns of the
matrix, corresponding to the columns which operate on the free parameters dP .

We use a heuristic to estimate the segment times, tm, to meet dynamic con-
straints and we hold these times fixed during the optimization.

33



Paper I: Continuous-Time Trajectory Optimization for Online UAV Replanning

3.3 Map Representation
Map representation and choice of potential cost function is central to the algorithm
described above. Naturally, the potential cost function must be smooth, but its
gradient must also be able to push trajectories out of collision. We use the poten-
tial described in [116], which is a function of an Euclidean Signed Distance Field
(ESDF) value, d(x), at a point in 3D space, x, and ε is a constant value specifying
the obstacle clearance past which space is considered free.

c(x) =


−d(x) + 1

2
ε if d(x) < 0

1
2ε

(d(x)− ε)2 if 0 ≤ d(x) ≤ ε
0 otherwise

(4.15)

We use a voxel-based map representation, as they can be built and maintained
quickly. To ensure that a trajectory does not collide with the environment, we must
check each voxel along the trajectory. Note that our continuous-time approach still
presents advantages over discrete-time methods, as we are flexible in how often we
sample the trajectory for collisions, and can change this interval between iterations.
We choose to evaluate the function along every arc length point ∆s equal to the map
voxel resolution. This significantly speeds up computation without compromising
safety.

3.4 Optimization
In any nontrivial environment, the optimization problem in (4.5) is likely to be
non-convex and highly nonlinear. For minimizing the function, we choose to use a
quasi-Newton method like BFGS [101] (though other simpler methods like gradient
descent can also be used).

However, all solutions found with such methods are inherently local solutions
– and they are prone of falling into local minima depending on the initialization.
Therefore, in order to increase the chances of finding a feasible (non-colliding)
solution, we do several random restarts where we perturb the initial state by a
random quantity, and then select the lowest-cost trajectory as the final solution. A
more thorough discussion on the necessity of random restarts for local trajectory
optimization is offered in [99].

4 Replanning System

In this section, we introduce the complete system that makes it possible to run our
local replanning method online, in real-time on dynamically updating map data.
First, we introduce how to build the map and its companion distance field, then
we discuss using a global plan as input into the local replanner, and finally, how
to select start and end points for replanning.
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4.1 Incremental Mapping
As mentioned in Section 3.3, we require an Euclidean Signed Distance Field (ESDF)
to compute the collision potentials. Our map representation is an Octomap [38],
which contains voxels in one of three states: free, unknown, or occupied.

When first constructing the map, we fill in the occupancy of all cells and compute
the distances for the complete map, which is computationally expensive. In order
to allow our algorithm to run in real-time, we track changed nodes in our Octomap
representation and invalidate all voxels in the ESDF that have those nodes as
parents (i.e., nearest neighbor of a different state). This allows us to recompute
the distance values of only a few tens to hundred voxels per map update, instead
of having to recompute the full dense grid of millions of voxels.

One important point about the map representation is that although Octomap
allows three states (free, unknown, and occupied) with full probabilities, in order
to construct a distance field, we must discretize to only two states — free and
occupied. How to deal with unknown voxels is a question of safety: we cannot
safely plan through them unless the robot is able to stop in known free space.
Therefore, we choose to treat unknown as occupied, creating a very conservative
planner. A more thorough discussion of this choice is offered in Section 6.

4.2 Global Planning
Next, we built a global plan to an end point in the original Octomap, while treating
unknown space as free. This creates a high-level optimistic planner, while the local
replanner is conservative and therefore safer. This plan will then be used as a prior
for the replanner, and also allows us to use a replanner that is not complete – in
case no solution is found by the local trajectory optimization, we simply stop and
wait for the global planner to find a new path.

We use a 2-stage global planner: first, we find a topologically feasible straight-
line path using Informed RRT* [30], and then we plan a dynamically feasible
polynomial trajectory through it [8].

4.3 Local Replanning
To perform the local replanning, we start with the global plan (if available) or
a straight-line plan to the next waypoint as prior, and incrementally update the
ESDF.

We then select appropriate start and end points for the replanning algorithm.
As start point, we choose the point on the current trajectory tR seconds in the
future, where tR is the update rate of the replanner. Since our planner allows
continuity and smoothness even in low derivatives, we are able to use the full state
of the UAV at the start point, including velocity and acceleration, guaranteeing a
smooth path even with changing plans.

The goal point is chosen as a point on the global trajectory that is hmeters ahead
of the start point, where h is a planning horizon. If unoccupied, we accept that
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Typical Solution Paths
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Figure 4.2: Results of 2D evaluations of our algorithm against CHOMP. (a): Typ-
ical paths generated by our algorithm with different number of segments, compared
to CHOMP. With only one segment (red), there are not enough degrees of freedom
to avoid all the obstacles, but it is able to find a solution (and one different from
CHOMP) with 5 segments. The potential cost map is in gray, with the original
obstacle edges in blue. (b): Success rate of the different local planners vs. density
of the environment. As density increases, success rate decreases, but more so for a
smaller number of segments, and some of this decrease can be counteracted by do-
ing 10 random restarts. (c): Fraction of successful plans (taken over environments
of all densities) by number of segments. This also shows a significant increase in
success rate by doing random restarts, which allows the algorithm to avoid local
minima that are in collision.

point as the goal, otherwise we attempt to find the nearest unoccupied neighbor
in the ESDF, and as a final fallback we shorten the planning horizon until a free
goal point is found.

We can then run the local optimization procedure between these two points.
Either the optimization succeeds in finding a collision-free path, or we attempt
random restarts until either a collision-free trajectory is found or the vehicle stops
and waits for the global planner to select a new path.

5 Experimental Results

In this section we first evaluate the proposed continuous-time local planner and
compare it to existing planning algorithms. Then, we validate our complete system
in both a long, realistic simulation scenario where the robot only has local infor-
mation about the environment, and then in a real-world test on an UAV avoiding
newly detected objects in a room.

5.1 Evaluation
We validate our approach as a local start-to-goal point planner in simulation on
100 random 2D forest environments.
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To analyze how our algorithm behaves in different densities of clutter, we gener-
ate 5× 5m Poisson forests [45] of densities between 0.2 trees/m2 to 0.8 trees/m2.
We then analyze the success fraction of our algorithm versus CHOMP [116], a
discrete-time local optimization method.
We initialize both algorithms with a straight-line path between opposite corners

of the map. For our continuous-time algorithm, we use between 1 and 5 segments of
11th order polynomials (N = 11) minimizing snap, and optionally use 10 random
restarts. For CHOMP, we use a fixed N of 100 points and minimize velocity.

Fig. 4.2a shows typical paths generated by the algorithms. As can be seen, 1
segment does not have sufficient degrees of freedom to solve this planning problem,
but 5 segments are able to find a short, smooth, feasible solution. CHOMP is also
able to find a solution for this problem, but falls into a different local minima from
our approach.
We can further analyze the behavior of the algorithms at different forest densities

(number of obstacles in the environment), as seen in Fig. 4.2b. As the density of the
environment increases, the chance of all methods finding a valid solution decreases.
However, there is a large increase on success rate if random restarts are used, and
a larger number of segments is able to handle denser environments (as in the case
in Fig. 4.2a). Fig. 4.2c shows the effect of increasing the number of segments on
success across all test cases.
For a more representative evaluation, we simulate arealistic 3D forest envi-

ronment using real tree models, as shown in Fig. 4.3. The environments are
10× 10× 10m, populated with a density of 0.2 trees/m2. The trees are of random
scale and height, adding the additional complexity of navigating in 3D and avoid-
ing the tree canopies. We generate 9 such environments, and select 10 random
start and goal points at least 4 meters apart, for a total of 90 test cases.
We evaluate several parameter settings of our algorithm and compare to CHOMP

(which minimizes velocity), and sampling-based visibility graph search (RRT-based
methods) with polynomial smoothing using 9th order minimum snap polynomials.
For CHOMP and our method, since both feature a derivative cost term and a
collision cost term, we use the same weights (wd = 0.1, wc = 10) to make as
fair of a comparison as possible. Both algorithms are allowed to run for up to 50
iterations.
The results are shown in Table 4.1. Though RRT-based algorithms with smooth-

ing are clearly able to solve a larger number of problems, Informed RRT* takes
too long to run in real-time at a high rate, and RRTConnect, while significantly
faster, is still exceeding the time budget and producing much longer paths.
For N = 100 (where N is the number of discretized waypoints) in the CHOMP

algorithm, the results are comparable both in run time, success rate, and path
length. However, in order to fully safely verify the trajectory, there should be
a waypoint for every voxel in the 3D occupancy grid. Therefore, N = 500 is a
more appropriate comparison from a safety perspective (as the mean path length
is approximately 5 meters), and since the execution time grows approximately with
O(N2), this method performs much slower in such cases. It also has a lower success
rate, as it does not converge to a collision-free solution within the limited iteration
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Figure 4.3: Figure showing the simulation setup for evaluations. The forest is
10×10×10 meters, with a density of 0.2 tree/m2. The paths are planned between
two random points in the space, at least 4m apart. Yellow is our method, cyan is
Informed RRT* + polynomial optimization (discussed in global planner section),
and purple is CHOMP.

steps.
On the other hand, our method has a fixed number of parameters for a given

number of segments, regardless of trajectory length or map resolution. Therefore,
we are able to keep a low computation time, as long as the number of segments
chosen is appropriate for the density of the environment, and our results show
that 3 segments is enough for the realistic forest scenario tested. As a result, our
approach has only 10 free parameters where CHOMP has 500 per axis.

We chose to use 3 segments and minimize jerk in our final real-world experiments,
as this has the smallest number of free parameters for the highest success rate in
our comparison.

5.2 System Simulation
Next, we validate our local replanning in the context of a complete system and
only a partially known map.

We set up a realistic simulation experiment in RotorS [28] simulator, using a
model of our multicopter platform. We approximate filling a blank map from
sensor data by only giving the UAV access to a small radius of the map around
itself while flying through a large forest environment. The map is 50× 50m with
a density of 0.1 trees/m2.

We use 4 meters as a planning horizon for our local replanning and give the
algorithm access to 5 meters around its current position (to emulate a stereo system
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Algorithm
Success
Frac-
tion

Mean
Norm.
Path

Length

Mean
Com-
pute

Time [s]

Inf. RRT* + Poly 0.9778 1.1946 2.2965
RRT Connect + Poly 0.9444 1.6043 0.5444
CHOMP N = 10 0.3222 1.0162 0.0032
CHOMP N = 100 0.5000 1.0312 0.0312
CHOMP N = 500 0.3333 1.0721 0.5153
Ours S = 2 jerk 0.4889 1.1079 0.0310
Ours S = 3 vel 0.4778 1.1067 0.0793
Ours S = 3 jerk 0.5000 1.0996 0.0367
Ours S = 3 jerk + Restart 0.6333 1.1398 0.1724
Ours S = 3 snap + Restart 0.6222 1.1230 0.1573
Ours S = 3 snap 0.5000 1.0733 0.0379
Ours S = 4 jerk 0.5000 1.0917 0.0400
Ours S = 5 jerk 0.5000 1.0774 0.0745

Table 4.1: A table showing comparison of RRT variants with polynomial smooth-
ing, CHOMP, and our approach on a set of 90 forest planning problems, as shown
in Fig. 4.3. We compare the success fraction, normalized path length (solution
path length divided by straight-line path length), and computation time. As can
be seen, adding random restarts significantly improves success fraction but at the
cost of higher computation time. RRT* and RRT Connect are able to solve a
higher percentage of problems, but at the cost of slower performance.

with a 5 meter maximum range). A new plan, minimizing jerk in a 3-segment
trajectory, is generated at 4 Hz as the UAV is flying.

Fig. 4.4 shows the results of our experiment, compared to a global plan made
from a fully-known map using Informed RRT* and polynomial smoothing.

As can be seen, both algorithms produce similar paths, with the local replanning
finding a solution that is only 0.5m longer than the global path. The RRT* plus
smoothing algorithm ran with complete knowledge of the map and took 30 seconds
to compute, 20 of which were spent on finding the visibility graph and 10 were spent
on finding a collision-free polynomial path. On the other hand, our algorithm was
able to find a comparable path while considering only a 4 meter region around
itself and continuous replanning at 4 Hz.

5.3 Real World Experiments
Finally, we show our complete system running in real-time on a multicopter, start-
ing from a completely blank map and filling it from sensor data. The experiment
is done in an indoor environment with two obstacles: a large one directly in front
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Figure 4.4: Here we show a comparison of our local replanning method (cyan
- 67.9 m), operating with a planning horizon of 4 meters, compared to a single
global plan (black - 67.5 m) generated with prior knowledge of the entire map.
The environment is 50×50 m with a density of 0.1 trees/m2, and we show only the
tree trunks of the obstacles for clarity. The local replanning algorithm is running
at a rate of 4 Hz, while the global planner, using Informed RRT* with polynomial
smoothing, runs in 30 seconds.

of the robot, obscuring the robot’s vision, and a smaller second obstacle behind
the first. A goal point is placed inside the second obstacle, and the UAV must
avoid the large obstacle, fly behind it, detect the second obstacle, and stop short
of collision. The physical setup is shown in Fig. 4.1.

Our platform is an Asctec Firefly1 using a visual-inertial stereo sensor [78], run-
ning at 20 Hz, for both state estimation and perception, both of which are done
entirely on-board on an 2.1 GHz Intel i7 CPU.

The UAV starts with a blank map and builds it online from dense stereo recon-
struction data. The map is updated at 5 Hz, and replanning is done at 4 Hz, and
we use the same parameters as in the previous section. The key difference is that
due to the narrow field of view of the camera, we treated unknown space as free.
A further discussion of this decision is offered in Section 6.

Fig. 4.5 shows the path evolution over time of the trajectory, with the color of
the trajectory going from red to blue with time. As can be seen, though initial

1http://www.asctec.de/en/uav-uas-drones-rpas-roav/asctec-firefly/
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6 Discussion

Figure 4.5: Local plans over time for the real-world experiments. The original
goal point is embedded in the second obstacle (pink), which is not visible from the
start position. Over time, the paths stop short of collision with the obstacle and
the final path (blue) is a shorter, lower curvature path than many of the plans
earlier in the experiment.

trajectory candidates are both in collision and often very far from obstacles, but
as the UAV approaches the goal, its path gets smoother and out of collision. Also
note that until the trajectory color reaches cyan, the trajectory goal is still placed
in collision since the UAV has not seen the obstacle yet. This experiment can be
seen in the video attachment.

We also show average timings for the complete system in Table 4.2. As can
be seen, the complete system is fast enough to run in real-time at 4 Hz, and has
a mean latency of only 40 ms between acquiring depth data from the sensors to
generating a feasible collision-free trajectory.

6 Discussion

Our experiments have shown that our approach is able to find solutions to local
path-planning problems successfully, at a comparable rate to existing trajectory
optimization methods. While sampling-based methods are still able to solve a
much larger percentage of the problems posed, they are prohibitively slow for our
target application.

The main advantage of our method compared to discrete-time trajectory op-
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Step Time [ms]

Mapping

Octomap Insert 10
ESDF Initial Map Creation* 110
ESDF Incremental Update <1

Local Replanning

Select Start and End 1
Optimization (Total) 28
Compute Der. Gradient (per 100 evals) 0.6
Computer Col. Gradient (per 100 evals) 16

Total Time per Planner Iteration 40

Table 4.2: Timings for our complete replanning system, taken from the real-world
experiment. We present mean timings over the entire experiment, which is why
the total optimization time is shorter than the maximum time with 10 restarts
(most planner iterations find a feasible solution without any restarts). Gradients
timings are given over 100 evaluations of the cost function. *Initial map creation
runs only once and is not included in the total.

timization methods lies in the inherently smooth, compact representation. For
example, as can be seen in Table 4.1, the number of waypoints CHOMP requires
to check every voxel along a 5 m long path with a map resolution of 10 cm is
N = 500, and with this many variables, the convergence rate is significantly slower
and the execution time is significantly longer than for our algorithm, even with 5
polynomial segments.

Our approach allows better control of end derivatives, which makes it much easier
to integrate this into a continuous replanning framework, as shown in Section 5.2
and Section 5.3. We are able to continue planning from the exact current (or future)
state of the UAV, leading to smooth, continuous paths. This is an advantage over
both motion primitive methods, which must discretize the state, and discrete-time
methods, which can only encode lower-derivative continuity as a cost rather than
a hard constraint.

However, the main drawback of this approach is the required map representation
(ESDF) in which space is treated as either occupied or unoccupied, and unknown
space must be treated as one of the two. The obvious choice is to treat unknown
space as impassable. While this can work well in simulation, real sensors often
have measurements which are not completely dense, leading to blocks of unknown
space even in areas that have been observed. Treating these as occupied leads
to the UAV rarely being able to find areas where the entire bounding box of the
UAV contains no unoccupied voxels. Treating these as free, on the other hand,
encourages the UAV to travel into unknown space to avoid obstacles. This can
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have disastrous consequences depending on the sensor configuration; for example,
flying straight into a ceiling that the sensors can not observe. There is also the
additional cost of computing a dense distance field over each voxel of the original
map, which does not scale to very large environments.

However, our algorithm can be adapted to use other map representations, as
long as a smooth, continuous penalty for collisions can be defined. Future work
will focus on finding more compact potential cost representations without these
drawbacks.

7 Conclusions

We presented a motion planning method that uses trajectory optimization in con-
tinuous time to find collision-free paths between obstacles. We then constructed a
complete replanning system, from mapping to trajectory generation, which allows
us to replan at a high rate and respond to previously unknown or unseen obstacles
with low delay. We verified that our method runs comparably to discrete-time
trajectory optimization, while having the advantages of continuous-time represen-
tation to minimize the number of parameters and allow arbitrary start and goal
states. Our experiments showed the system running both in simulation and on a
real multicopter platform at 4 Hz, though timing analysis shows that it could run
at upwards of 25 Hz.
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Abstract
How to represent a map of the environment is a key question of robotics.
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ics and surface reconstruction, projective Truncated Signed Distance Field
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1 Introduction

Any discussion of map representations in robotics generally has two sides: the
perception side, which often focuses on creating high-quality 3D reconstructions of
natural environments from limited sensor data, and the planning side, which uses
pre-built maps to navigate through the environment in a safe and collision-free
manner.

Mapping and planning often have very different requirements from an environ-
mental representation. For mapping from the perception standpoint, it is often
most important to be able to output a high-quality colored surface model, such
as a mesh. For navigation and planning, it is often most essential to have fast
collision checking and be able to compute clearance and direction toward nearest
obstacles.

In this work, we focus on the intersection of these two fields, with special at-
tention given to image-based sensing, such as stereo vision and RGB-D cameras:
creating 3D maps, online, from noisy sensor data in order to be used by online
planners for obstacle avoidance.

Euclidean Signed Distance Fields (ESDFs) have long been used in planning liter-
ature for collision checking (especially of complex shapes), inferring distances and
gradients to objects for planning, and finding large free areas [116].

On the other hand, with the advent of RGB-D cameras, KinectFusion has
brought projective Truncated Signed Distance Fields (TSDFs) into the forefront
as a fast, flexible map representation that implicitly computes the position of the
surface using zero crossings [74].

Though both of these representations are signed distance fields (SDFs), the way
that the distance of a voxel is computed differs. In the case of the ESDFs, a free
voxel’s distance represents the Euclidean distance to the nearest occupied voxel
(and vice-versa in the case of occupied voxels). The ESDF is computed for every
voxel in the map. On the other hand, the distance of a voxel in a projective TSDF
represents the distance to the surface along the ray direction from the center of
the sensor, and is truncated to only have values very near the surface, allowing for
greater compression and decreasing errors due to this approximate distance metric.

In this paper, we argue that these two approaches can be combined into one –
and rather than computing separate representations for map building and planning,
find a compromise that allows the same representation to be used for both.

We seek to evaluate the accuracy of ray-distance calculations versus Euclidean
distance calculations given different numbers of viewpoints from a realistic vision-
based sensor. We first remove the truncation requirement of the TSDF, and then
evaluate how the ray distances compare to true Euclidean distances for planning
purposes, and propose a hybrid approach that should retain the better qualities of
both TSDFs and ESDFs for both mapping and planning.

We also offer some comparison to the most-used map representation for online
3D map building and planning in unstructured environments: Octomap [38].

The advantages of our proposed approach over map representations typically
used for online planning are as follows:
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• Allows a single map representation that’s both well-suited for online con-
struction from sensor data and usage for online planning.
• Has a more natural representation of object surface (zero-crossing of distance

field), which allows easier and more accurate modeling of sensor noise.
• Separates sensor measurement (distance to surface) from measurement un-

certainty (voxel weight).
• Allows fast look-up of occupancies of complex shapes, especially when rep-

resented as sets of spheres, for online planning.
• For optimization-based planning algorithms, has a natural gradient magni-

tude and direction both inside and outside obstacles – allowing trajectories
to be ‘pushed’ out of collision using optimization.
• Allows extracting accurate meshed surface models for other applications.
• If desired, the same map can also be used for SLAM or state estimation, or

can be built up de-coupled based on input from other state estimators.
We will cover the points in the following sections. First we will describe existing

methods in both the mapping and planning fields, then discuss the advantages of
using an SDF-based representation over an occupancy-based representation like
Octomap, and finally provide validation for the claim that the distances used in
these two representations are comparable using simulation.

2 Related Work

This section discusses relevant previous work and details of the approaches in
mapping and planning literature.

2.1 Mapping Literature
SDFs have long been used for representing 3D volumes in computer graphics [31]
[27]. They have also been used to build offline reconstructions of objects from real
sensor data since the 1990s [16].

However, TSDFs have come back into the forefront of computer vision and
robotics in 2011 with the new RGB-D Kinect sensors and the work from Newcombe
et al. on KinectFusion [74]. Their approach focuses on doing high-resolution, accu-
rate 3D reconstructions from RGB-D data on a GPU in real-time, using a TSDF as
the main representation. They provide a Simultaneous Localization and Mapping
(SLAM) approach, which estimates the pose of the camera at the same time as
creating the reconstruction.

There have been a number of extensions to this approach, including Kintinuous,
which allows scanning much larger spaces [112], and FastFusion which allows online
reconstruction on the CPU rather than GPU [104] in an octree-style voxel grid.
The main end-result of these is to generate a high-fidelity mesh, usually using a
marching cubes algorithm [61].

Another competing representation for high-resolution online mapping from RGB-
D data is RGB-D SLAM [35], which uses surfels (small planar units with size, color,
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and surface normal) to represent 3D structure, as a volumetric analogue to sparse
pointclouds. Such representations are able to take advantages of the SLAM tech-
niques developed for sparse keypoint-based maps and are better suited to distorting
geometry, for example in ElasticFusion [113] where the map is distorted when en-
countering loop closures. These methods generally have high accuracy for state
estimation and high-quality models. However, Bylow et al. have shown that it is
possible to have the same level of accuracy from TSDF-based maps [11].

Therefore, SDF-based representations are well-studied, fast, and accurate for
online surface reconstruction. In the following section, we will discuss how SDF-
based representations are used for planning.

2.2 Planning Literature
Maps are essential to planning collision-free paths, with the representation of the
map defining both the quality of the resulting path, and also what kind of planning
algorithms can be used.

The minimum amount of information a map must provide is occupancy of a given
point in space. Assuming a fixed-size grid, this enables the use of many different
classes of planning algorithm: search-based methods like A* and D*-Lite [47],
sampling-based methods like RRTs [53].

Occupancy grids represent the most commonly-used type of map representation
for planning in 2D [20]. The approach of Elfes et al. is to use a fixed-size grid,
probabilistic model of sensor measurements and model observed (known) and un-
known space explicitly, allowing the incorporation of complex sensor models and
reasoning about the environment. There are now many options available off-the-
shelf that will run a complete 2D SLAM system online and provide occupancy
grids of previously unknown environments [65], and countless planning algorithms
that take 2D occupancy grids as input [26].

Naively extending occupancy grids to 3D, however, leads to huge memory re-
quirements as well as slow ray-casts and look-ups for any space larger than a room.
The solution most commonly used in 3D contexts while building a map online is
Octomap [38]. This approach uses an octree-based representation of occupancy
probabilities of cells in 3D space. The octree structure allows large blocks of space
with the same probability to be represented by a single large cell, therefore vastly
decreasing the amount of memory needed to represent areas of unknown or free
space.

However, there are planning approaches which require additional information
from a map. For example, trajectory optimization-based planners, such as CHOMP [116]
and TrajOpt [99] require the distance to obstacles and occupancy gradient infor-
mation. Algorithms such as these require an ESDF that is not truncated, and
contains distance values over the entire voxel space. Usually these are constructed
from another map representation, and often from a map hand-crafted out of object
primitives (spheres, cubes) or high-fidelity mesh models of objects for manipula-
tion [87].

Having a distance map also speeds up collision checking of complex shapes – for
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example, many-jointed robot arms are commonly represented as a set of overlap-
ping spheres and check the distance field in the center of each sphere (which is one
look-up in the ESDF per sphere) [115] [116] [40].

For gradient-based trajectory optimization methods, the collision cost (which is
necessary to produce collision-free trajectories) also needs a gradient. For these,
the ESDF gives a natural cost (a function, such as hinge loss [99] or a smoothed
hinge loss [116] of the distance) and checking the distance values of the neighbors
gives the gradient at a given point. This allows CHOMP and other such methods
to follow the upward gradient of the distance to push points on the trajectory out
of collision.

Wanger et al [110] is the closest work to our proposed approach, where a com-
plete ESDF is built from the output of KinectFusion [74] and used for trajectory
planning with CHOMP. However, their approach builds the entire ESDF at once
from TSDF data, while our work focuses on exploring ways to combine these two
representations into one.

In summary, SDFs allow for faster collision checking than occupancy grids while
providing additional data needed for optimization-based planning methods.

3 SDF Advantages over Octomap

In this section, we make arguments about why using an SDF is a better map
representation for both perception (creating the map) and planning (using the
map for collision avoidance and clearance calculations) than the most commonly
used 3D representation, the Octomap [38].

Since its advent, Octomap has been very widely used for 3D robotics applica-
tions, most notably for UAVs [34], [8]. We believe that this is due to a number of
factors: first and not least, the open-source implementation and associated ROS
wrappers have made it a very easy off-the-shelf solution for many applications.
Second, the ‘probabilistic’ nature of the representation (assigning probabilities to
each raycast, merging multiple observations of the same scene together) make it
a good representation for noisy sensor data, such as stereo matching or RGB-D
sensors where ‘speckles’ are common. This adds a level of low-pass filtering even
to sensors exhibiting non-Gaussian error models. The third is due to memory
efficiency and speed: the flexible voxel size allows representing large areas, and
with some straight-forward optimizations, it is possible to get the insertion time
of a dense stereo scan at 320x240 down to approximately 10 ms, and performing
collision checks (even for a large bounding box) in this space is also very fast [34].

However, this representation also has downsides. The first is that the probabil-
ity model used does does not accurately represent the error model of vision-based
depth sensing. Since Octomap was originally designed to use with laser measure-
ments, the accuracy of which does not degrade with distance to the sensor, the
Octomap sensor model has a single probability of occupancy for one voxel at the
end of the ray-cast. However, this is not an accurate model for stereo- or other
vision-based sensing, where it is possible to have an expected error of over a meter
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Figure 5.1: Comparison of results from a single ray-cast in the various represen-
tations discussed: (a) diagram of a single vision-based sensor ray hitting a surface,
(b) probability for range from an inverted stereo sensor model [36], (c) vanilla
Octomap [38] probabilities of the raycast, (d) L. Heng Weighing [34], (e) TSDF
(truncation radius not shown) [74], and (f) the TSDF weights along this ray [11].
Note that these are illustrations, and not to scale.
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at high distances, depending on the camera setup [36]. Heng et al implement a
more realistic sensor model using distance weighing in the Octomap, however this
tends to have the effect of inflating obstacles in the map [33].

Fig. 5.1 shows a representation of the different weighing representations for a
single 1D ray within Octomap, compared to a TSDF representation. Fig. 5.1a
shows a diagram of a ray cast from a depth camera hitting a wall, Fig. 5.1b shows
the inverse sensor model for a stereo camera observing that wall, and Fig. 5.1c-d
show vanilla and L. Heng weighing for the sensor hit. Since Octomap has a discrete
cut-off probability for considering space occupied, the figure shows why L. Heng
weighting tends to distort or inflate object boundaries.

One advantage of the TSDF is that even when discretized, it models a continuous
function, as shown in Fig. 5.1e. Therefore it is possible to recover the position of
the surface at a precision above the minimum voxel size, allowing the use of larger
voxels and therefore smaller maps in memory.

The other advantage over Octomap is that TSDF has two values for each voxel:
the distance to the surface (along the ray from the camera) and the weight/probability
of this measurement. This allows us to more accurately model the actual error of
vision-based depth estimates, and when merging multiple measurements, leads to
a maximum-likelihood estimate of the surface, since the surface is found as a zero
crossing. Bylow et al evaluate different weighing functions for TSDFs [11], and
we show the linear weighing used by KinectFusion in Fig. 5.1f. However, since
this value is separate from the actual distance measurement, any model can be
incorporated without necessarily inflating the surface.

While the advantages for perception are clear, an SDF-based implementation
has advantages in terms of path planning as well. Here we discuss the advantages
of an ESDF (using Euclidean distances to nearest occupied/unoccupied space) over
a binary occupancy-based representation. We will discuss how we can combine the
TSDF and ESDF in the following section.

As discussed in Section 2.2, an ESDF allows fast collision checks for complex
shapes, as long as they can be expressed as a set of overlapping spheres. It also
permits using gradient-based methods, as it gives a smooth cost of collision, which
decreases as an object approaches free space. This also allows computation of
collision cost gradients, and therefore choosing directions which lead to decreasing
costs.

4 Combining ESDF and TSDF: Results

The main difference between the two representations, TSDF for mapping and
ESDF for planning, is the way that distances are computed. Both are signed
distance fields, as the names suggest, but the distance in each voxel represents a
different quantity.

In the ESDF, the distance in each voxel is the Euclidean distance to the nearest
occupied cell (or if inside an object, distance to the nearest free cell). In the
TSDF, on the other hand, the distance is computed along the sensor ray – that
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is, it represents a distance to the nearest occupied cell not in Euclidean space, but
along this one-dimensional ray extending from the sensor center.

Here we present models showing how different ray distances (TSDF) are ver-
sus Euclidean distances (ESDF) and how this affects the quality of the map for
planning. We focus on evaluating the metrics that are important for planning,
especially for local optimization-based planners: error in distance to obstacles and
direction of the gradient of the field.

We suggest four strategies to evaluate. The first two are building a projecting
TSDF without a minimum truncation distance with two different strategies for
merging multiple scans into the map:

1. Average the sensor value with the map value, giving equal weight to both
(average weighing)

2. Take the minimum distance outside obstacles, and the maximum distance
inside (minimum weighing)

We also propose a hybrid E/TSDF, where outside some minimum truncation
distance, we iteratively compute Euclidean distances based on the projective dis-
tances inside the truncation radius with every new integrated scan. Finally, we also
present the ’standard’ approach for comparison, where we compute an occupancy
grid and calculate Euclidean distances from that grid after building the complete
map.

We use a vastly simplified model of the TSDF in 2D and a simulated sensor with a
70◦ field of view, 0.5◦ angular resolution, and a maximum range of 8m. There is no
noise on this sensor, but it is discretized to the voxel size. The sample environment
attempts to mimic an enclosed office space of 10m × 10m with many occlusions,
some geometric and some organic shapes. Fig. 5.2a shows the occupancy map we
use for the simulations and Fig. 5.2b shows the ground-truth ESDF computed from
this known map, where white is the object borders, pink is inside the objects, and
green and yellow are distances (yellow being the furthest from an obstacle).

We generated random viewpoints within this space, sampling uniformly from
unoccupied space and yaw. We then cast rays into this map, and generated distance
measurements until 0.5m behind a surface. When raycasting into unknown space,
the value was simply updated to the ray measurement value. When raycasting into
space that has been observed before, we use the strategies described above.
Fig. 5.2c shows the TSDF generated with average weighing, and Fig. 5.2d shows

the results of minimum weighing after 500 viewpoints. As can be seen, average
weighing always overestimates the distance – as ray-distance is always greater than
or equal to true Euclidean distance (it is equal in the case where the ray direction
is along the surface normal, and greater in every other case). Whereas minimum
weighing, over a large number of viewpoints, starts to converge to the true ESDF.

Of course, with fewer viewpoints, the estimate is worse – Table 5.1 shows the
mean absolute error of distance measurements (taken only outside obstacles) over
all observed voxels for different number of viewpoints. r is the radius around the
surface at which errors are evaluated; r = 0.5m is an estimate of the errors close to
the surface, and r =∞ is evaluated over the whole map. The values are compared
to the ground-truth ESDF shown in Fig. 5.2b. However, this is not a strictly fair
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4 Combining ESDF and TSDF: Results
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(a) Occupancy grid
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(b) ESDF (ground truth)
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(c) TSDF (mean weight)
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(d) TSDF (min. weight)
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(e) Hybrid T/ESDF
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(f) Occupancy + ESDF

Figure 5.2: Results of various weighing schemes in SDF, using 500 viewpoints.
White represents the observed surface of the object (zero crossings), green and yel-
low are areas outside the object, and pink are areas inside the object. Quantitative
comparison is presented in Table 5.1.

comparison, as all the viewpoint generated maps have discretization errors and not
all obstacles are observed (for a lower number of viewpoints). We therefore also
present the results for "Occupancy + ESDF", which was generated by creating a
standard occupancy map from the sensor measurements and computing an ESDF
from that map. It can be thought of as a lower bound on the error (though in
some cases it actually has slightly higher error than other representations, which
is due to discretization).
The other method we evaluate is a hybrid T/ESDF, which functions by behaving

like a TSDF around surface edges, holding this surface section fixed and iteratively
updating all other values using Euclidean distances. This retains the desirable
quantities of both representations – near the surface for mapping and surface re-
construction, and further away from the surface for planning, while adding only
slight computation cost per new viewpoint. Table 5.1 shows that this hybrid ap-
proach has the lowest errors of the TSDF-based approaches, and is comparable to
the ESDF map built from occupancy grids.
This shows that depending on the weighing scheme, with sufficient distinct view-
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Viewpoints TSDF
Average Weighing

TSDF
Min Weighing Hybrid E/TSDF Occupancy + ESDF Unobserved

Ratio

Mean Abs. Error [m] r = 0.5m r = ∞ r = 0.5m r = ∞ r = 0.5m r = ∞ r = 0.5m r = ∞
V = 10 0.699686 1.022263 0.501408 0.854449 0.134561 0.480509 0.162672 0.541797 0.659258
V = 50 0.730469 1.009407 0.317534 0.374416 0.067819 0.078796 0.070928 0.086687 0.054670
V = 100 0.717782 0.972221 0.157599 0.197076 0.042314 0.051344 0.037105 0.049586 0.010183
V = 500 0.628532 0.788858 0.031576 0.031498 0.015214 0.014252 0.009491 0.010818 0.000000

Gradient Error Mag. [m] 0.198165 0.014947 0.030057 0.004643
Gradient Error Ang. [◦] 6.065860 8.699339 9.735610 8.699339

Table 5.1: Error analysis of different TSDF representations compared to ESDF.
Results of the simulating a 2D SDF with a realistic sensor, comparing the error in
using the TSDF distance (distance along the sensor ray) and comparing the error
to the true ESDF (distance from nearest object). r is the radius around the surface
at which errors are evaluated: r = 0.5 only evalutes distances close to the surface,
while r =∞ evaluates all distances in the map. Since below 500 viewpoints, not all
parts of the map have been observed, we also give a Unobserved Ratio for reference.

points, ray-distance approximates Euclidean distance, and there exist hybrid ap-
proaches that can further increase the accuracy of these combined maps.

5 Conclusions

In this paper, we compare two signed distance field representations: truncated
signed distance fields (TSDFs), used for computer graphics and surface reconstruc-
tion from depth data, and Euclidean signed distance fields (ESDFs), used in plan-
ning for fast collision checking and cost and gradient information for optimization-
based path planners.

We show the advantages of SDF-based maps for online map building and online
planning in 3D compared to the commonly-used Octomap representation [38] and
validate some of our claims by showing that projective ray-distances (used in TS-
DFs) can approximate Euclidean distances (used in ESDFs) when using sufficient
viewpoints and an intelligent merging strategy. We also propose a hybrid approach
which has advantages of both ESDFs and TSDFs.

We hope that this work can be a starting point for considering different map
representations for online mapping for planning and navigation in 3D.
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fulfill these needs, but require obstacle distance information, which can be
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We propose a method to incrementally build ESDFs from Truncated Signed
Distance Fields (TSDFs), a common implicit surface representation used
in computer graphics and vision. TSDFs are fast to build and smooth out
sensor noise over many observations, and are designed to produce surface
meshes.
We show that we can build TSDFs faster than Octomaps, and that it is
more accurate to build ESDFs out of TSDFs than occupancy maps. Our
complete system, called voxblox, is available as open source and runs in
real-time on a single CPU core. We validate our approach on-board an
MAV, by using our system with a trajectory optimization local planner,
entirely on-board and in real-time.
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1 Introduction

Rotary-wing Micro Aerial Vehicles (MAVs) have become one of the most popular
robotics research platforms, as their agility and small size makes them ideal for
many inspection and exploration applications. However, their low payload and
power budget, combined with fast dynamics, requires fast and light-weight algo-
rithms. Planning in unstructured, unexplored environments poses a particularly
difficult problem, as both mapping and planning have to be done in real-time.
In this work, we focus specifically on providing a map for local planning, which
quickly finds feasible paths through changing or newly-explored environments. Fur-
thermore, humans often supervise high-level mission goals, and therefore we also
aim to provide a human-readable representation of the environment.

While many algorithms are well-suited for global MAV planning (such as RRTs,
graph search methods, and mixed-integer convex programs), local re-planning re-
quires algorithms that can find feasible (though not necessarily optimal) paths in
minimal time. Trajectory optimization-based planning methods are well suited to
these problems, as they are very fast and able to deal with complex environments.
However, they require the distances to obstacles to be known at all points in a map,
as well as distance gradients [81, 93]. These distance maps are usually computed
from an occupancy map such as Octomap [38], most often in batch, but more
recently some incremental approaches have appeared [51]. The main drawback of
these methods is that the maximum size of the map must be known a priori, and
cannot be dynamically changed.

We attempt to overcome these shortcomings by proposing a system capable of
incrementally building Euclidean Signed Distance Fields (ESDFs) online, in real-
time on a dynamically growing map, while using an underlying map representation
that is well-suited to visualization. ESDFs are a voxel grid where every point con-
tains its Euclidean distance to the nearest obstacle. Truncated Signed Distance
Fields (TSDFs) have recently become a common implicit surface representation for
computer graphics and vision applications [16, 74], as they are fast to construct,
filter out sensor noise, and can create human-readable meshes with sub-voxel res-
olution. In contrast to ESDFs, they use projective distance, which is the distance
along the sensor ray to the measured surface, and calculate these distances only
within a short truncation radius around the surface boundary. We propose to build
ESDFs directly out of TSDFs and leverage the distance information already con-
tained within the truncation radius, while also creating meshes for remote human
operators. We assume that the MAV is using stereo or RGB-D as the input to the
map, and that its pose estimate is available.
Our experiments on real datasets show that we can build TSDFs faster than Oc-

tomaps [38], which are commonly used for MAV planning. We also analyze sources
of error in our ESDF construction strategy, and validate the speed and accuracy of
our method against simulated ground truth data. Based on these results, we make
recommendations on the best parameters for building both TSDFs and ESDFs
for planning applications. Finally, we show the complete system integrated and
running in closed-loop as part of an online replanning strategy, entirely on-board
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2 Related Work

Figure 6.1: A planning experiment using voxblox-generated TSDF (shown as
grayscale mesh) and ESDF (shown as a horizontal slice of the 3D grid) running
entirely in real-time and on-board the MAV, not using any external sensing. The
vehicle attempts to plan to a point behind the mannequin by using a trajectory
optimization-based method [81] which relies on having smooth distance costs and
gradients.

an MAV. This complete system, named voxblox, is available as an open-source
library at github.com/ethz-asl/voxblox.

The contributions of this work are as follows:
• Present the first method to incrementally build ESDFs out of TSDFs in dy-

namically growing maps.

• Analyze different methods of building a TSDF to maximize reconstruction
speed and surface accuracy at large voxel sizes.

• Provide both analytical and experimental analysis of errors in the final ESDF,
and propose safety margins to overcome these errors.

• Validate the complete system by performing online replanning using these
maps on-board an MAV.

2 Related Work

This section gives a brief overview of different map representations used for plan-
ning, and existing work in building ESDFs and TSDFs.
Occupancy maps are a common representation for planning. One of the most

popular 3D occupancy maps is called Octomap [38], which uses a hierarchical
octree structure to store occupancy probabilities. However, there are planning
approaches for which only occupancy information is insufficient. For example,
trajectory optimization-based planners, such as CHOMP [116], require distances
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to obstacles and collision gradient information over the entire workspace of the
robot. This is usually obtained by building an ESDF in batch from another map
representation.

While creating ESDFs or Euclidean Distance Transforms (EDTs) of 2D and 3D
occupancy information is a well-studied problem especially in computer graphics,
most recent work has focused on speeding up batch computations using GPUs
[12, 107]. However, our focus is to minimize computation cost on a CPU-only
platform.

Lau et al. have presented an efficient method of incrementally building ESDFs
out of occupancy maps [51]. Their method exploits the fact that sensors usu-
ally observe only a small section of the environment at a time, and significantly
outperforms batch ESDF building strategies for robotic applications. We extend
their approach to be able to build ESDFs directly out of TSDFs, rather than from
occupancy data, exploiting the existing distance information in the TSDF.

TSDFs, originally used as an implicit 3D volume representation for graphics,
have become a popular tool in 3D reconstruction with KinectFusion [74], which
uses the RGB-D data from a Kinect sensor and a GPU adaptation of Curless and
Levoy’s work [16], to create a system that can reconstruct small environments in
real-time at millimeter resolution.

The main restriction of this approach is the fixed-size voxel grid, which requires
a known map size and a large amount of memory. There have been multiple
extensions to overcome this shortcoming, including using a moving fixed-size TSDF
volume and meshing voxels exiting this volume [112], using an octree-based voxel
grid [104], and allocating blocks of fixed size on demand in a method called voxel
hashing [76]. We follow the voxel-hashing approach to allow our map to grow
dynamically as the robot explores the environment.

The focus of all of these methods is to output a high-resolution mesh in real-
time using marching cubes [61], frequently on GPUs. There has also been work on
speeding up these algorithms to run on CPU [104] and even on mobile devices [46];
however, the application of high-resolution 3D reconstruction remains the same.
Instead, our work focuses on creating representations that are accurate and fast
enough to use for planning onboard mobile robots, while using large voxels to speed
up computations and save memory.

One existing work that combines ESDFs and TSDFs is that of Wagner et al., who
use KinectFusion combined with CHOMP for planning for an armed robot [110,
111]. However, instead of updating the ESDF incrementally, they first build a
complete TSDF, then convert it to an occupancy grid and compute the ESDF
in a single batch operation for a fixed-size volume. In contrast, our incremental
approach gives us the ability to maintain an ESDF directly from a TSDF, handle
dynamically growing the map without knowing its size a priori, and is significantly
faster than batch methods.

Features such as CPU computation time, incremental ESDF construction, and
dynamically-growing map are essential for a map representation to use for on-board
local planning for an MAV.
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3 System

Figure 6.2: System diagram for voxblox, showing how the multiple map layers
(TSDF, ESDF, and mesh) interact with each other and with incoming sensor data
through integrators.

3 System

Our overall system functions in two parts: first, incorporating incoming sensor
data into a TSDF (described in detail in Section 4), and then propagating updated
voxels from the TSDF to update the ESDF (see Section 5).

Fig. 6.2 shows the overall system diagram. Sensor data from stereo or RGB-D
sensors comes in as colored pointclouds, which are then integrated into the TSDF
as discussed in Section 4 using raycasting into the voxel map. Updated voxels from
the TSDFs are marked, and then at a given frequency, the ESDF is updated by
propagating changes from the TSDF and doing wavefront propagation, as shown
in Section 5. The mesh is also built on-demand from the latest state of the TSDF
for visualization purposes.

In order to make it suitable for exploration and mapping applications, we use a
dynamically sized map that makes use of the voxel hashing approach of Niessner
et al. [76]. Each type of voxel (TSDF or ESDF) has its own layer, and each layer
contains independent blocks that are indexed by their position in the map. A map-
ping between the block positions and their locations in memory is stored in a hash
table, allowing O(1) insertions and look-ups. This makes the data structure flex-
ible to growing maps, and additionally allows faster access than octree structures
such as used by Octomap (which is O(logn)).

4 TSDF Construction

TSDFs are constructed out of pointcloud data by raycasting points in a sensor
pointcloud into a global map, then averaging the new projective distance measure-
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ments into existing voxels, calculating distances only up to a truncation distance of
δ. Choices in how to build a TSDF out of sensor data can have a large impact on
both the integration speed and the accuracy of the resulting reconstruction. Here
we present weighting (how new measurements are averaged with existing measure-
ments) and merging (how points from the sensor data are grouped) strategies,
which increase accuracy and speed especially at large voxel sizes.

4.1 Weighting
A common strategy to integrate a new scan into a TSDF is to ray-cast from the
sensor origin to every point in the sensor data, and update the distance and weight
estimates of voxels along this ray. The choice of weighting function can have a
strong impact on the accuracy of the resulting reconstruction, especially for large
voxels, where thousands of points may be merged into the same voxel per scan.
KinectFusion discussed using weights based on θ, the angle between the ray

from the sensor origin and the normal of the surface, however advocate for using
a simpler constant weight [74]. This is a common approach in other literature [11,
39, 76, 112].

The general equations governing the merging are based on the existing distance
and weight values of a voxel, D and W , and the new update values from a specific
point observation in the sensor, d and w, where d is the distance from the surface
boundary. Given that x is the center position of the current voxel, p is the position
of a 3D point in the incoming sensor data, s is the sensor origin, and x,p, s ∈ R3,
the updated D distance and W weight values of a voxel at x will be:

d(x,p, s) = ‖p− x‖ sign
(
(p− x) • (p− s)

)
(6.1)

wconst(x,p) = 1 (6.2)

Di+1(x,p, s) =
Wi(x)Di(x) + w(x,p)d(x,p, s)

Wi(x) + w(x,p)
(6.3)

Wi+1(x,p) = min
(
Wi(x) + w(x,p),Wmax

)
(6.4)

We propose a more sophisticated weight to compare to the constant weighting
shown above. Bylow et al. compared the effects of dropping the weight off behind
the isosurface boundary, and found that a linear drop-off often yielded the best
results [11]. Nguyen et al. empirically determined the RGB-D sensor model, and
found that the σ of a single ray measurement varied predominantly with z2 [75],
where z is the depth of the measurement in the camera frame. We combined a
simplified approximation of the RGB-D model with the behind-surface drop-off as
follows:

wquad(x,p) =


1
z2

−ε < d
1
z2

1
δ−ε (d+ δ) −δ < d < −ε

0 d < −δ,
(6.5)

where we use a truncation distance of δ = 4v and ε = v, and v is the voxel size.
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5 Constructing ESDF from TSDF

Intuitively, this would make an even bigger difference in the presence of thin
surfaces that are observed from multiple viewpoints, as this reduces the influence
of voxels that have actually not been directly observed (those behind the surface).
An analysis of the effect this weighting has on surface reconstruction accuracy is
presented in Section 6.1.

4.2 Merging
We aim to speed up merging of new sensor data into the TSDF by designing a
strategy that only performs raycasts once per end voxel, exploiting the relatively
large voxel size compared to the resolution of the incoming sensor pointclouds.
There are two main methods for integrating information from a sensor data into

a TSDF: raycasting [16] and projection mapping [74] [46].
Raycasting casts a ray from the camera optical center to the center of each

observed point, and updates all voxels from the center to truncation distance δ
behind the point. Projection mapping instead projects voxels in the visual field-of-
view into the depth image, and computes its distance from the distance between
the voxel center and the depth value in the image. It is significantly faster, but
leads to strong aliasing effects for larger voxels [46].
Our approach, grouped raycasting, significantly speeds up raycasting without

losing much accuracy. For each point in the sensor scan, we project its position to
the voxel grid, and group it with all other points mapping to the same voxel, taking
the mean color and distance across grouped points and performing raycasting only
once. This leads to a very similar reconstruction result while being up to 20 times
faster than the naive raycasting approach, as shown in Section 6.1.

5 Constructing ESDF from TSDF

In this section we discuss how to build an ESDF for planning out of a TSDF
built from sensor data, and then analyze bounds on the errors introduced by our
approximations.

5.1 Construction
We base our approach on the work of Lau et al., who present a fast algorithm for
dynamically updating ESDFs from occupacy maps [51]. We extend their method
to take advantage of TSDFs as input data, and additionally allow the ESDF map
to dynamically change size. The complete method is shown in Algorithm 1, where
vT represents a voxel in the original TSDF map and vE is the co-located voxel in
the ESDF map.
One of the key improvements we have made is to use the distance stored in the

TSDF map, rather than computing the distance to the nearest occupied voxel. In
the original implementation, each voxel had an occupied or free status that the
algorithm could not change. Instead, we replace this concept with a fixed band
around the surface: ESDF voxels that take their values from their co-located TSDF
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voxels, and may not be modified. The size of the fixed band is defined by TSDF
voxels whose distances fulfill |vT.d| < γ, where γ is the radius of the band, analyzed
further in Section 5.2.

The general algorithm is based on the idea of wavefronts – waves that propagate
from a start voxel to its neighbors (using 26-connectivity), updating their distances,
and putting updated voxels into the wavefront queue to further propagate to their
neighbors. We use two wavefronts: raise and lower. A voxel gets added to the raise
queue when its new distance value from the TSDF is higher than the previous value
stored in the ESDF voxel. This means the voxel, and all its children, need to be
invalidated. The wavefront propagates until no voxels are left with parents that
have been invalidated.

The lower wavefront starts when a new fixed voxel enters the map, or a previously
observed voxel lowers its value. The distances of neighboring voxels get updated
based on neighbor voxels and their distances to the current voxel. The wavefront
ends when there are no voxels left whose distance could decrease from its neighbors.

Unlike Lau et al. [51], who intersperse the lower and raise wavefronts, we raise
all voxels first, then lower all voxels to reduce bookkeeping. Additionally, where
they treat unknown voxels as occupied, we do not update unknown voxels. For
each voxel, we store the direction toward the parent, rather than the full index
of the parent. For quasi-Euclidean distance (shown in the algorithm), this parent
direction is toward an adjacent voxel, while for Euclidean distance, it contains the
full distance to the parent. A full discussion of Euclidean versus quasi-Euclidean
distance is offered in the section below.

Finally, since new voxels may enter the map at any time, each ESDF voxel keeps
track of whether it has already been observed. We then use this in line 20 of
Algorithm 1 to do a crucial part of bookkeeping for new voxels: adding all of their
neighbors into the lower queue, so that the new voxel will be updated to a valid
value.
Our approach incorporates a bucketed priority queue to keep track of which

voxels need updates, with a priority of |d|. In the results, we compare two different
variants: a FIFO queue and a priority queue (where the voxel with the smallest
absolute distance is updated first).

5.2 Sources of Error in ESDF
When using maps for planning, it is essential to know what effect the method has on
the error in the final distance computations. In this section, we aim to quantify the
effect of our approximations and recommend a safety margin by which to increase
bounding boxes used for planning.

We consider two key contributions to error in the final ESDF: first, the TSDF
projective distance calculations, and second, the quasi-Euclidean approximation in
distance calculations.

Projective distance (distance along the camera ray to the surface) will always
match or overestimate the actual Euclidean distance to the nearest surface. There-
fore, to use projective distances from the TSDF, we need to quantify the error this
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5 Constructing ESDF from TSDF

Algorithm 1 Updating ESDF from TSDF
1: function Propagate(mapESDF, mapTSDF)
2: for each voxel vT in updated voxels in mapTSDF
3: if isFixed(vT)
4: if vE.d > vT.d or not vE.observed
5: vE.observed← True
6: vE.d← vT.d
7: Insert(lower, vE)
8: else
9: vE.d← vT.d
10: Insert(raise, vE)
11: Insert(lower, vE)
12: else
13: if vE.fixed
14: vE.observed← True
15: vE.d← sign(vT.d) · dmax
16: Insert(raise, vE)
17: else if not vE.observed
18: vE.observed← True
19: vE.d← sign(vT.d) · dmax
20: InsertNeighbors(lower, vE)
21: ProcessRaiseQueue(raise)
22: ProcessLowerQueue(lower)
23: function isFixed(vE) return −γ < vE.d < γ

24: function InsertNeighbors(queue, vE)
25: for each neighbor of vE
26: Insert(queue, neighbor)
27: function ProcessRaiseQueue(raise)
28: while raise 6= ∅
29: vE ← pop(raise)
30: vE.d← sign(vE.d) · dmax
31: for each neighbor of vE
32: if vE.direction(neighbor) = neighbor.parent
33: Insert(raise, neighbor)
34: else
35: Insert(lower, neighbor)
36: function ProcessLowerQueue(lower)
37: while lower 6= ∅
38: vE ← pop(lower)
39: for each neighbor of vE at distance dist
40: if neighbor.d > 0 and vE.d + dist < neighbor.d
41: neighbor.d← vE.d + dist
42: neighbor.parent ← −vE.direction(neighbor)
43: Insert(lower, neighbor)
44: else if neighbor.d < 0 and vE.d− dist > neighbor.d
45: neighbor.d← vE.d− dist
46: neighbor.parent ← −vE.direction(neighbor)
47: Insert(lower, neighbor)
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will introduce. The error is dependent on d, the measured distance of the voxel,
and θ, the incidence angle between the camera ray and the object surface. We
assume locally planar objects. The projective error residual rp(θ) can therefore be
expressed as:

rp(θ) = d sin(θ)− d (6.6)

For the purposes of this analysis, we assume that the incidence angle θ can
be between π/20 and π/2, and is uniformly distributed in this range. The lower
bound of π/20 comes from the observation that a camera ray can not be parallel
to a surface boundary, nor can a camera exist infinitesimally close to a surface,
due to the physical dimensions of the camera. π/20 corresponds to an MAV a
minimum of 1 meter away from a surface with a maximum sensor ray length of 5
meters. Given that f(θ) is the uniform distribution between π/20 and π/2, as this
is symmetric, then the expected error for a single voxel observation will be:

E[rp(θ)] =

∫ π
2

π
20

20

9π
(d sin(θ)− d) dθ

= −0.3014d (6.7)

Note that d has an upper bound of the truncation distance δ.
However, this does not consider multiple observations of the same voxel, which

will lower this error. To quantify this, we performed Monte Carlo simulations of
merging multiple independent measurements of the same voxel, shown in Fig. 6.3.
The results show that even for as few as 3 observations, the error has an upper
bound of 0.5δ with p = 0.95, and as the number of observations increases, the error
at this probability is reduced down to below 0.25δ.
Depending on how large the fixed band is determines how much to compensate

for this error. If only a single voxel of the surface frontier is used, then it is safe to
increase the safety distance by half of one voxel.

The second source of error considered is from the quasi-Euclidean distance as-
sumption in the ESDF calculations. Quasi-Euclidean distance is measured along
horizontal, vertical, and diagonal lines in the grid, leading to no error when the
angle φ between the surface normal and the ray from the surface to the voxel is
a multiple of 45◦, and a maximum error at φ = 22.5◦ [70]. If φ is uniformly dis-
tributed between 0 and π/4 the residual rq(φ) for this error, and its maximum and
expected values are:

rq(φ) =
(
d−

d sin(5π/8− φ)

sin(3π/8)

)
(6.8)

rq(
π

8
) = −0.0824d (6.9)

E[rq(φ)] =

∫ π
4

0

4

π

(
d−

d sin(5π/8− φ)

sin(3π/8)

)
dφ

= −0.0548d (6.10)
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Figure 6.3: Probability of the distance error being below a threshold, for a given
voxel distance measurement. a shows the probabilities for 3 voxel observations,
and b shows 95% probability contours for multiple observations. For a single voxel
observation, the maximum error with p = 0.95 is 0.8δ, while for 3 observations
p = 0.95 falls at 0.5δ, and trends towards 0.25δ as the number of observations
grows.

Since the d in this case only has an upper bound in the maximum ESDF com-
puted distance, we recommend inflating the bounding box of the robot by 8.25%.
Section 6.2 has empirical results on what effect this assumption has on the overall
error in the ESDF computations, and shows that in practice it is small enough to
justify the speed-up between full Euclidean and quasi-Euclidean distance.

6 Experimental Results

In this section we validate the algorithms presented above on two real-world datasets:
the cow dataset with an RGB-D sensor and EuRoC with a stereo camera, both
validated against structure ground truth.
The cow dataset1 features several objects including a large fiberglass cow in a

small room. It is taken with the original Microsoft Kinect, uses pose data from
a Vicon motion capture system, and the ground truth is from a Leica TPS MS50
laser scanner with 3 scans merged together.
The EuRoC dataset is a public benchmark on 3D reconstruction accuracy [9],

in a medium-sized room filled with objects. It is taken with a narrow-baseline
grayscale stereo sensor, using Vicon fused with IMU as pose information, and

1projects.asl.ethz.ch/datasets/doku.php?id=iros2017
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Figure 6.4: Qualitative comparisons of weighting/merging strategies on the cow
dataset, colored by normals and with the object outline from ground truth overlaid.
As can be seen, especially at large voxel sizes, our weighting strategy distorts the
structure less.

Leica TPS MS50 scans as structure ground truth. We use the V1_01_easy dataset
for experiments.

All experiments are done on a quad-core i7 CPU at 2.5 GHz. Only one thread
is used.

6.1 TSDF Construction
In order to verify that our weighting strategy scales well with larger voxel sizes,
we validate our TSDF reconstructions against the structure ground truth for our
datasets.

We evaluate the accuracy of our reconstruction by projecting each point in the
ground truth pointcloud into the TSDF, performing trilinear interpolation to get
the best estimate of the distance at that point, and taking that distance as an
error. We consider only known voxels, and allow a maximum error equal to the
truncation distance (δ = 4v).

Qualitative comparison are shown on the cow dataset in Fig. 6.4, compared to
the ground truth cow silhouette. As can be seen, constant weighting significantly
distorts the geometry of the cow at larger voxel sizes: the head is no longer in the
correct position, and the rear legs are gone entirely, which will lead to incorrect
distance estimates in the ESDF, while our weighting strategy better preserves
structure.

Fig. 6.5 shows a quantitative comparison on both datasets with respect to voxel
size: as can be seen, weighting has a more significant effect on error as voxel
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Figure 6.5: Structure accuracy reconstruction results for TSDFs with various
voxel sizes, and comparing constant weight and quadratic weight with linear drop-
off behing the surface. It can be seen that the choice of weighting function makes a
more significant difference at larger voxel sizes, as more measurements are combined
into any given voxel.

0.05 0.10 0.20
Voxel Size [m]

10
-3

10
-2

10
-1

10
0

T
im

e
 p

e
r 

S
c
a
n
 [
s
] 

(l
o
g
 s

c
a
le

)

Timings for Different Insert Methods

Raycasting
Grouped Raycasting
Octomap
Octomap Grouped

Figure 6.6: Timing results for different merging strategies on the EuRoC dataset.
Our approach is up to 20 times faster than standard raycasting into a TSDF, and
up to 2 times faster than even grouped Octomap insertions. Note log time scale.
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Figure 6.7: A normal-colored ground-truth mesh of the simulation experiment,
with 3 planes (not pictured: ground plane), a cube, and a sphere. Also shown is
a horizontal slice of the ESDF generated from 50 random viewpoints with a voxel
size of 0.05 meters.

size increases, and our proposed quadratic weighting always outperforms constant
weighting.

A comparison of the timings between various merging strategies and against
Octomap [38] is shown in Fig. 6.6. While Octomap with the grouped raycasting
strategy as discussed in Section 4.2 is already significantly faster than normal
raycasting Octomap, it is still substantially slower than our TSDF approach. This
is due to the hierarchical data structure: as the number of nodes in the Octomap
grows larger, look-ups in the tree get slower, as they scale with O(logn); with voxel
hashing [76], the lookups remain O(1). Grouped raycasting leads to significant
speeds up, especially with larger voxel sizes (as more points project into the same
voxel). Overall, we show that using our merging strategy makes using TSDFs
feasible on a single CPU core, allowing it to be used for real-time mapping and
planning applications on-board an MAV.

6.2 ESDF Construction
Simulation Results

To evaluate the errors introduced by various ESDF construction methods, we set
up a simulated benchmark with 3 planes, a sphere, and a cube, shown with a
horizontal ESDF slice in Fig. 6.7, of size 10 × 10 × 10 meters. We simulated a
noiseless RGB-D sensor with a resolution of 320 × 240 and a maximum distance
of 5 meters. Readings were taken at 50 random free-space locations, uniformly
sampled from all 6 DoF poses in the space that were a minimum of 1 meter from
an obstacle.
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Figure 6.8: A comparison of methods for generating ESDFs from TSDFs and
occupancy, and their errors and timing differences. Using all of the data in half
the truncation distance is more accurate thanoccupancy, while using only one voxel-
width of the surface outperforms all other methods, as shown in a. Quasi-Euclidean
distance has only a marginal increase in error for a large decrease in computation
time b.

We produced ground truth ESDFs of the space by evaluating the minimum
distance to the objects at voxel centers. We then built a TSDF out of the simulated
sensor data, and used multiple ESDF building methods to compare their error
against this ground truth, as well as their integration times, shown in Fig. 6.8.
The most basic method, occupancy, treats all negative-valued TSDF voxels as
occupied and assigns them a distance of 0, similar to Wagner et al. [111] The next
set of methods takes a band of values around the surface of the TSDF of half the
size of the truncation distance (δ/2 < |d|), and we compare both full Euclidean and
quasi-Euclidean distances. The last set of methods takes a one-voxel-wide band
around the surface, with both quasi-Euclidean and Euclidean distance.
As can be seen, the lowest errors are found by taking a one-voxel-wide fixed band

around the surface. This is due to the projection error discussed in Section 5.2.
However, it is important to note that all of the methods have a significantly lower
error than using occupancy values, showing the advantages of building these maps
out of TSDFs rather than occupancy maps.
While using full Euclidean distance shows improvement in ESDF error of 8.23%,

5.18%, and 4.72% in the half-truncation distance method for voxel sizes of 0.05,
0.10, and 0.20 meters, respectively, the integration times are increased by 201.0%,
61.3%, and 33.9%. Given that real-time execution is one of the core goals of this
approach, our findings show that for many applications, using quasi-Euclidean
distance is a good trade-off between error and runtime.
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Figure 6.9: Timing results for updating ESDF in batch and incrementally, with
different queueing strategies on the EuRoC dataset. The normal FIFO queue
performs best for small voxel sizes, and at large voxel sizes, there is a speed-up
from using a single-insert priority queue. Note the log time scale.

Real Data

To validate the presented ESDF runtimes, we used real data from the EuRoC
dataset for our evaluations on incremental and batch timings, using two different
queueing methods, as discussed in Section 5. It can be seen in Fig. 6.9 that building
the ESDF incrementally leads to an order of magnitude speedups over the entire
dataset, and that at large voxel sizes, using a single-insert priority queue is faster
than using a FIFO queue.

We also compare the integration time of the TSDF with update time of the
ESDF layer in Fig. 6.10. Though for small voxel sizes, the ESDF update is slower
than integrating new TSDF scans, at large enough voxels (here, v = 0.20 m), the
TSDF integration time flattens out while the ESDF update time keeps decreasing.
Since the number of points that need to be integrated into the TSDF does not
vary with the voxel size, projecting the points into the voxel map dominates the
timings for large voxels.

Based on these results, we recommend to use a single-voxel fixed band, quasi-
Euclidean distance, and a priority queue for ESDF construction.

7 MAV Planning Experiments

To prove the usefulness of our generated ESDF for a real planning application, we
set up an experiment with an MAV exploring an unknown space and replanning
online as its ESDF gets updated. A photo and screenshot of this experiment is
shown in Fig. 6.1, and the complete trial can be seen in the video attachment. The
platform we used is an Asctec Firefly, equipped with a forward-facing stereo cam-
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Figure 6.10: Timings results for integrating new data into the TSDF compared
to propagating new TSDF updates to the ESDF on the EuRoC dataset. At small
voxel sizes, TSDF integration is faster, but flattens out at large voxel sizes as the
amount of sensor data does not decrease, while ESDF timings continue to decrease.

era synced to an IMU, which we use for stereo matching as input to the mapping
process, and also as input to the visual-inertial state estimator. All state estima-
tion, reconstruction, planning, and control runs entirely on-board on the Intel i7
2.1 GHz CPU without using any external sensing or infrastructure.

For this experiment, we use the continuous-time trajectory optimization replan-
ning approach presented in [81], which relies on having smooth collision costs and
gradients from a Euclidean distance map. We update the ESDF at 4 Hz, and re-
plan after every map update, using 0.20 meter voxels. Even with random restarts
in the optimization procedure, the complete system including TSDF construction,
ESDF updates, and replanning was able to run well under the 250 ms time budget.

We made one extension to the planning method to guarantee good performance:
since the planner can not handle unknown space (as there are no collision gradients
available), we allocate a 5 meter sphere around the robot’s current position and
mark all unknown voxels in that sphere as occupied. To compensate for fact that
the MAV can not observe its current position (and would therefore mark it as
unknown), we take a smaller 1 meter sphere around the robot’s start position and
mark all unknown voxels in this smaller sphere as free. Note that these changes
do not affect any voxels that have actually been observed – only unknown voxels
are modified.

This experiment demonstrates that the proposed mapping approach can be used
in combination with a planner and state estimator to navigate a small aerial robotic
platform to a waypoint in a previously unknown environment while continually
replanning to avoid obstacles. This is achieved while staying within the computa-
tional limits of the platform and operating in real time.
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8 Conclusions

This paper aims to find a suitable map representation for local planning on MAVs
in unexplored environments. Euclidean Signed Distance Fields (ESDFs) provide
distance information to obstacles, which is essential for trajectory optimization
planners. In contrast, Truncated Signed Distance Fields (TSDFs) are fast to build,
filter out noise in sensor data, and can be used to easily create human-interpretable
meshes. We propose to incrementally build ESDFs directly out of TSDFs, rather
than occupancy-based representations. We extend existing methods to take ad-
vantage of distance information in the TSDF and allow dynamically-growing maps
by using voxel hashing as the underlying data structure.

We focus on reducing the computational complexity of building these maps, while
quantifying the errors introduced in our approximations to guarantee planning
safety. Our results suggest building a TSDF with 20 cm voxels, using grouped
raycasting, and quadratic weights with linear drop-off behind a surface boundary.
We also recommend using a one-voxel fixed band from the TSDF in order to build
the ESDF, using quasi-Euclidean distances, and a distance-based priority queue for
processing the open set. Given possible sources of error in the maps, we recommend
inflating the robot bounding box by 8.5% + 0.3v, where v is the voxel size.

We show that our method of building the TSDF is faster than building an
Octomap, and that the accuracy of an ESDF built from a TSDF is higher than if
built from an occupancy map. Finally, we validate our complete system by building
maps and using them to plan online with a trajectory optimization replanner,
entirely on-board an MAV.
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Abstract
In order to enable Micro-Aerial Vehicles (MAVs) to assist in complex, un-
known, unstructured environments, they must be able to navigate with
guaranteed safety, even when faced with a cluttered environment they have
no prior knowledge of. While trajectory optimization-based local planners
have been shown to perform well in these cases, prior work either does not
address how to deal with local minima in the optimization problem, or
solves it by using an optimistic global planner.
We present a conservative trajectory optimization-based local planner,
coupled with a local exploration strategy that selects intermediate goals.
We perform extensive simulations to show that this system performs bet-
ter than the standard approach of using an optimistic global planner, and
also outperforms doing a single exploration step when the local planner is
stuck. The method is validated through experiments in a variety of highly
cluttered environments including a dense forest. These experiments show
the complete system running in real time fully onboard an MAV, mapping
and replanning at 4 Hz.
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1 Introduction

Micro-Aerial Vehicles (MAVs) have the potential to perform many mapping and in-
spection missions for search and rescue and other humanitarian operations, where
it is dangerous or impractical for humans to go. Planning is a key part of any
autonomous system, and online local replanning allows for fast reactions to newly
observed or dynamic parts of the environment. And while local replanning has also
been recently addressed in literature, most work is shown on very low-density envi-
ronments, and makes optimistic assumptions about the environment (for example,
that unknown space can be treated as free before observing it) [14, 91].

However, in more cluttered, unknown environments, these assumptions may lead
to poor planning results. Executing these plans can also be dangerous, both for
the MAV and nearby people. For example, assuming unknown space is free in
forest spaces can lead to planning directly upwards into the tree canopy, this can
occur as obstacles directly above an MAV are often outside the field of view of
its sensors. Alternatively if a highly conservative local planner is employed, many
cluttered environment will result in the system finding no feasible paths to the
goal. In this work, we present a system that combines a conservative local planner
with a local exploration strategy to navigate a cluttered, unknown environment
such as the forest in Fig. 7.1.

Different local optimization methods for avoidance have been recently covered
in literature [19, 81, 109]. However, most do not explicitly address the problem
of getting stuck in local minima. This poses a special problem in unexplored or
partially unexplored environments, where only locally-optimal or reactive planners
will frequently fail to find a path. Other approaches use an optimistic global
planner (one that considers unknown space as free) to overcome the problem of
occasionally getting stuck. While this works well in low-density environments,
our work aims to show that this strategy (using an optmistic RRT* [44] for goal
selection) is not effective for highly-cluttered, partially unexplored environments.

Instead, we bring in concepts from the exploration literature to the area of
local replanning. We compare our optimistic global planning to performing an
exploration step from the exploration-gain-based “next-best-view" planner (NBVP)
when the trajectory optimization planner fails to find a feasible solution [3]. We
then propose our own local exploration method, which tightly couples the local
planning algorithm with a strategy that selects an intermediate goal. The method
maximizes both coming closer to the final goal and potential exploration gain,
increasing the chances of finding a feasible path.

To solve the problem of map representations, our method also uses an incrementally-
built, dynamically-growing Euclidean Signed Distance Field (ESDF) to compute
collision costs and gradients. The ESDF is built from a Truncated Signed Distance
Field (TSDF) [83], and allows us to plan in initially unknown environments with no
prior knowledge of upper bounds on map size, and does not require pre-computing
the object distances in batch.

We compare different parameters for our underlying local optimization method,
which is an extension of our previous work [81], when the map is known a priori
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Figure 7.1: Experimental results from a flight through a dense forest, with video
camera footage on the left, on-board view from one of the stereo cameras on the
upper right, and a representation of the final mesh map on the bottom right. The
final flown path is shown in yellow, the current pose of the MAV in the photos is
shown as colored axes, and the planned path at the time of the photo is shown in
orange.

or initially unknown, and then compare the success rates of various intermediate
goal-finding strategies in highly cluttered environments. We then demonstrate
our complete system running in real-time on-board an Asctec Firefly MAV and
navigating without any prior map knowledge through both an office environment
and a dense forest.

The contributions of this work are as follows:
• Extension of optimization problem for continuous-time polynomial trajectory

optimization.

• A system, including mapping and planning, which conservatively handles
unknown space and is able to grow the map over time.

• An active local exploration strategy for overcoming local minima even in
unknown environments by finding intermediate goal points.

• Simulation benchmarks and real-world experiments in various cluttered en-
vironments.
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2 Related Work

While a large number of methods exist for local avoidance, we will address methods
in 3 categories. The first is purely reactive methods, which do not build a map
of the environment but instead plan directly in the current sensor data. While
these methods are very fast and computationally efficient, they do not work well
in cluttered environments where avoidance maneuvers may be non-trivial, and suf-
fer heavily from falling into local minima. The second class is map-based local
avoidance methods, which use various techniques to compute feasible and locally-
optimal paths through local maps built from sensor data or a priori known global
maps. The last class of work we will examine here does not focus on obstacle
avoidance, but instead on maximizing exploration coverage of unknown environ-
ments. While planning collision-free paths is also a requirement for any exploration
strategy, the focus is on minimizing unknown space in the final map. We will draw
inspiration from some of these methods to overcome the shortcomings of using
optimization-based local planners alone.

2.1 Reactive Avoidance
Reactive methods focus on reacting to incoming sensor data as quickly as possible,
and so act directly on obstacles in the current sensor field of view without building
persistent maps.

For instance, our previous reactive work shows a method to directly convert
incoming disparity maps from stereo into object segmentations, and then uses
wall-following algorithm to avoid them [80]. Florence et al. directly integrates the
nearest obstacle from a disparity map into a controller that is an open-loop library
of motion primitives [22]. Only inexact, local state estimation is required for this
approach, and they demonstrate it in both extensive simulation and real-world
experiments. Lopez et al. build a kD tree of the current sensor view pointcloud,
and then perform aggressive reactive avoidance from a library of fixed-velocity but
variable angle motion primitives, generated from a triple-integrator model of MAV
dynamics [60].

While all three methods are shown avoiding obstacles directly in front of the
MAV without prior map knowledge, they are only demonstrated on much lower
obstacle densities than discussed in this paper, and suffer from not being able to
avoid obstacles that are not directly in the current sensor field of view.

2.2 Map-Based Replanning
In contrast, most replanning methods focus on navigating in a map rather than
directly on sensor data.

Richter et al. presented dynamics-aware path planning for MAVs as solving an
unconstrained QP through a visibility graph generated by an RRT [95], which re-
mains a popular method for global planning [8], but is debatably too slow to replan
in real-time. Our previous work [81] combines unconstrained polynomial spline op-
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timization with gradient-based minimization of collision costs from CHOMP [93],
but is prone to local minima. Usenko et al. utilize a similar concept, but use a B-
spline representation instead, and use a circular buffer-based Octomap to overcome
the issue of needing a fixed map size [109]. Dong et al. also use the same general
problem structure as CHOMP, but represents trajectories as samples drawn from a
Gaussian Process (GP) and optimize the trajectory using factor graphs and prob-
abilistic inference [19]. While all these methods are able to avoid obstacles and
replan in real time, none offer convincing ways to overcome the problem of getting
stuck in a local minima and being unable to find a feasible solution.

Pivtoraiko et al. use graph search with motion primitives to replan online [91].
However, they use an optimistic local planner: unknown space is considered traversible,
and while this helps escape local minima, it is fundamentally unsafe. Chen et al.
plan online by building a sparse graph by inflating unoccupied corridors within
an Octomap, then optimize an unconstrained QP to get a polynomial path [14].
However, they only use 2D sensing and treat unknown space as free, again leading
to potentially unsafe paths in very cluttered environments.

2.3 Exploration
The goal of exploration literature is not only to stay safe and avoid collisions, but
to maximize the amount of information about the environment. There are many
different approaches, such as greedily tracking the closest unexplored frontier [34]
or simulating gas-like particles throughout the environment to find the sparsest
area of dispersion to explore [103].

Rather than tracking frontiers, some methods instead aim to maximize infor-
mation gain. Charrow et al. optimize this gain over a state lattice with motion
primitives as connecting edges, and then improve the plan with trajectory opti-
mization [13]. Bircher et al. instead build an RRT tree in the unexplored space, and
execute a straight-line plan to the first vertex of the most promising branch of the
tree, maximizing the number of unknown voxels falling into the sensor frustum [3].
Papachristos et al. extend Bircher’s method by also optimizing the intermediate
paths to maximize localization quality [88]. Similarly, Davis et al. optimize paths
between next-best views to maximize coverage by introducing a coverage term to
their iLQG formulation [17].

Our work combines the fast online replanning capabilities of trajectory optimization-
based planning with the idea of maximizing exploration gain in a future sensor field
of view. This combination allows us to overcome the tendency of local planners to
get stuck with local minima, while intelligently using our model of the system to
find feasible solutions.

3 Problem Description

We aim to solve the problem of an MAV attempting to reach a goal in a previously
unexplored (and completely unknown) environment. The core focus being on very
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obstacle-dense and cluttered environments, with forest flight as a particular exam-
ple. The MAV has at least one 3D imaging sensor, either RGB-D or stereo, with
a finite resolution and a fixed horizontal and vertical FOV, mounted in a fixed
position. We assume that the MAV is building a map of the environment from this
sensor as it navigates (Section 5). We design a conservative local planner, which
treats unknown space as occupied and inaccessible (Section 4). The core problem
we want to address is how to design a complementary goal-finding algorithm for
when the local planner gets ‘stuck’ in a local minimum (Section 6). All parts of
the method should be fast enough to run online and in real-time entirely on-board
the MAV.

4 Local Trajectory Optimization

Our local trajectory optimization method is an extension of our previous work [81].
We represent an MAV trajectory as a high-degree polynomial spline as in Richter
et al. [95], and put soft constraints (expressed in the segment time allocation) on
the maximum velocity and acceleration along the trajectory, which Mellinger et al.
show makes the trajectory physically feasible for a simplified dynamics model [66].

The actual optimization minimizes a compound cost, consisting of minimizing a
derivative of position such as jerk or snap as in [95] and [66], combined with the
collision gradient cost from Ratliff et al. [93].

We will consider a polynomial trajectory in K dimensions, with S segments,
and each segment of order N . Each segment has K dimensions, each of which is
described by an Nth order polynomial:

fk(t) = a0 + a1t+ a2t
2 + a3t

3 . . . aN t
N (7.1)

with the polynomial coefficients:

pk =
[
a0 a1 a2 . . . aN

]>
. (7.2)

In order to avoid numerical issues with high orders of t, we instead optimize over
the end-derivatives of segments within the spline [95], sorted into fixed derivatives
dF (such as end-constraints) and free derivatives dP (such as intermediate spline
connections):

p = A−1M

[
dF
dP

]
. (7.3)

Where A is a mapping matrix from polynomial coefficients to end-derivatives, and
M is a reordering matrix to separate dF and dP .

The final form of the optimization problem is:

d∗P = argmin
dP

wdJd + wcJc + wgJg (7.4)
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Where the derivative cost, Jd, aims to minimize a certain derivative (often jerk
or snap) of the position [66], with R as the augmented cost matrix.

Jd = d>FRFFdF + d>FRFPdP +

d>PRPFdF + d>PRPPdP (7.5)

The collision cost, Jc, is an approximation of the line integral of costs along the
path, where c(x) is the collision cost from the map, f(t) is the position along the
trajectory at time t, and v(t) is the velocity at time t:

Jc =

tm∑
t=0

c(f(t)) ‖v(t)‖∆t (7.6)

We use 3 segments and optimize jerk, as was found to be the best settings in our
previous work [81].
We extend our previous work by using a soft cost for the goal, Jg , similarly to

[109], and the local goal finding below.

Jg = ‖f(tend)− g‖ (7.7)

where

fk(tend) = TendA
−1M

[
dFk
dPk

]
(7.8)

This allows the optimization to slightly adjust the goal point to allow better
trajectories, or find feasible trajectories at all. An analysis of the effect of this
term on the success rate is offered in Section 7.
In general, even with the soft cost term, the initial state of the optimization

problem should have the end point be free or almost free of collisions. In our
system, we set a fixed planning horizon rp, which is the maximum distance from
the current state that the planner is allowed to go to. However, projecting a global
goal gg onto the sphere of this radius often leads to occluded end points.
In Section 7, we compare two different strategies for moving this end-goal to be a

feasible end point for the spline: straight-line goal finding, which backtracks along
the line from the projection of gg to the start point of the trajectory, xs, until
the first unoccupied point along this line. The second method is gradient-based
in the map: from the projection of gg onto the sphere, we evaluate the gradient
of the collision cost map and follow the gradient down until a free-space location
is found. If the approach becomes stuck in a local minimum of the gradient, we
evaluate the straight-line strategy for one step.
Finally, these trajectories are only planned on R3 and derivatives. To map these

trajectories to the full pose of the MAV on SE3, pitch and roll are defined by
the acceleration in x and y directions, while yaw γ remains free. We use velocity-
tracking yaw to increase the chances of the MAV seeing new or dynamic obstacles
before collision:

γ(t) = arctan
( vy(t)

vx(t)

)
(7.9)
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5 Map Representation and Unknown Space

As the optimization method in Section 4 requires not only distances to the nearest
obstacles but also the gradients of these distances, we require a map representation
that can be efficiently queried for this information. While our original work [81]
used a fixed-size Euclidean Signed Distance Field (ESDF) built from an octomap
representation, we more recently presented a way to build ESDFs from Truncated
Signed Distance Fields (TSDFs) efficiently. This allows the system to incrementally
build maps of arbitrary size from sensor data in real time. This system, called
voxblox1, is used as the map representation for the proposed planner [83].

The map consists of both the original TSDF, built from sensor data, which
contains projective signed distances to surfaces within a very small truncation
distance to the object and free space information, and the ESDF which contains
Euclidean distances to obstacles in a much larger radius. The details of how to
build both representations incrementally is addressed in [83].

To implement the desired property of treating unknown space as occupied, we
modify the ESDF with data from the current state of the robot. One critical issue
with treating unknown space as occupied is that the starting position of the robot
will never be observed and will always be treated as occupied. For this reason, we
change the ESDF values of unknown voxels in a small clearing radius rc around
the initial pose of the MAV to free. rc should ideally be only slightly larger than
the collision checking radius of the robot.

We also take a large radius ro, which should be greater than or equal to the
maximum planning radius, and set all unknown voxels in this radius to occupied.
Marking unknown as occupied is essential to conservative local planners, as allow-
ing free entry into unknown space leads to behaviors such as slamming into the
ceiling when presented with obstacles in front.

6 Intermediate Goal Selection

In addition to the mapping and local planning methods presented above, we need
an active exploration strategy to overcome the shortcomings of local trajectory
optimization methods in very cluttered, partially unknown environments. A typical
solution to this problem is to use an optimistic global planner, which assumes
unknown space is free, to select a new set of waypoints to track [77].

In the results section (Section 7), we quantitatively compare four core methods
of selecting new waypoint locations. The first method is naive random waypoint
selection. When the local optimization fails, we select a new 3D waypoint position
at random within a sphere of the starting position of the trajectory. The planner
then attempts to track this waypoint, until it is either reached or another infeasible
solution is encountered. Then the new waypoint is set to the original goal point.
This strategy (one random, one back to original goal) continues until either the
original goal point is reached or the maximum number of replans is exceeded.

1github.com/ethz-asl/voxblox
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6 Intermediate Goal Selection

The second strategy is an optimistic (unknown = free) RRT* [44] visibility graph.
This aims to best simulate the global planners used in other approaches, such as
[109] and [8] [77]. Since as Section 5 describes, we set a large radius of unknown
space to occupied in the ESDF, we instead use the raw TSDF as the obstacle map
and treat unknown voxels as unoccupied. We then generate a sparse visibility
graph toward the final goal, and track the first waypoint in the graph. If the first
waypoint is reached, then we keep iterating through the graph until the goal point.
If at any time, the local planner is again stuck, we generate a new RRT* plan.
We also consider the opposite strategy; a conservative or pessimistic RRT*,

which assumes unknown space is occupied. Since the underlying local planner is
also conservative, if it is unable to find a solution, it is likely that no solution to
the goal exists through free space. Therefore, we build the RRT graph and select
the node in the tree that has the closest Euclidean distance to the goal point, and
then track the first vertex in the branch of the tree that the closest node belongs
to.
The next strategy we consider is directly from the exploration literature, the

“next-best view" planner (NBVP) from Bircher et al. [3]. Their approach consists
of building a rapidly-exploring random tree (RRT) with a small number of nodes in
position and yaw space, and simulating the expected view fustrum of the camera
sensor. The approach then selects the first node to execute in the branch that
leads to the highest information gain in terms of unknown voxels that would be
observed. We implement this approach for comparison; however, since there is no
goal-tracking component to this exploration strategy, we use the same scheme as
with the random waypoint selection: one exploration waypoint, followed by trying
to reach the goal, followed by another exploration waypoint.
The final strategy is our exploration strategy, combining aspects of both the

exploration strategy above and goal-tracking and sensor field of view awareness,
described in detail below.

6.1 Proposed Method
Our method uses a similar methodology to NBVP, where the potential exploration
gain of future points is evaluated by projecting the camera frustum into the voxel
grid. However, we adapt the method to (i) better suit the purpose of increasing the
chances of the robot making it to the goal, and (ii), to function online, in real-time
in a high-rate loop. The core differences are that we do not build an RRT graph,
we subsample within the view frustum, we do not do raycasting to find occlusions,
and we introduce a goal-seeking reward in addition to the exploration gain.
Our method works as follows: first, we draw the global goal g with some proba-

bility Pg ∈ (0, 1). Otherwise, we proceed to generate N random points, xn, in the
unoccupied space of the TSDF, within a maximum radius r of the start point of
the trajectory xs. Note, importantly, that we use the original TSDF rather than
the ESDF to select these points and evaluate the frustum, as the ESDF sets nearby
unknown space to occupied for planning safety purposes.
We select a yaw γ for each point by finding the angle of the vector from the
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Figure 7.2: Error in estimation of unknown voxels in the sensor frustum (as a
proxy for exploration gain), by subsampling fraction (a subsampling fraction of
0.01 = 1% of the samples are taken). As can be seen, a sampling of 5% of the
samples yields only a maximum 4% error in the unknown voxel estimation but
could lead to up to a 20× speedup in lookup operations.

trajectory start xs to the sampled point xn, to approximate the real velocity-
facing yaw. For each of these points, we evaluate the exploration gain of the
camera frustum at that point by counting the number of unknown voxels in the
TSDF. The exploration gain function l(x, γ) can be expressed as:

l(x, γ) = #{v|v ∈ frustum(x, γ) ∩ v ∈ unknown(v)} (7.10)

In order to run in real-time, we approximate the actual exploration gain by
subsampling the frustum by a certain factor, and checking only every sth voxel.
We evaluate the effect of this approximation in Fig. 7.2 in simulation, which shows
that sampling only 5% of the samples usually leads to an estimation error of less
than 1%, and in practice runs 3 times faster than evaluating the full frustum.

Additionally, for each point we also evaluate the distance to the global goal,
normalized by the maximum distance to goal dg (to allow consistent weighting
across different settings and goal distances). This normalized distance is converted
to a reward, giving the total reward function R for each point xn as:

dg = ‖g − xs‖+ r (7.11)

R(xn, γ,g) = wel(x, γ) + wg
dg − ‖g − xn‖

dg
(7.12)

The point with the highest reward is chosen as the next intermediate goal.
A diagram showing the complete system (including mapping) is shown in Fig. 7.3.
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7 Simulation Experiments

Figure 7.3: System diagram of the mapping and planning subsystems. The ESDF
is used by the trajectory optimizer to compute collision costs, and the TSDF is
used by the intermediate goal finding (local exploration algorithm) to evaluate
exploration gain. If the trajectory optimization succeeds, the trajectory is sent to
the controller; otherwise we attempt to find an alternative intermediate goal.

7 Simulation Experiments

This section will evaluate different aspects of our system in a simulation environ-
ment where the ground truth map is known. We compare the effects of full map
knowledge vs. planning in an initially unknown map, evaluate the effect of parame-
ters on success rate of local trajectory optimization, compare the intermediate goal
finding methods presented in Section 6, and the effect of subsampling the camera
view frustum for exploration gain evaluation.

These simulations are made with the voxblox, which allows generating ground-
truth ESDFs for environments made of primitive shapes (in this case, cylinders
to simulate trees in a forest), and also allows simulating sensor measurements by
raycasting into the map. The maps are 15 meters × 10 meters, and have an
obstacle region of 10× 10, to ensure that the start and end poses are always free.
Cylinders of radii between 0.1 and 0.5 m and various heights are placed randomly
within the space. The objects per square meter metric maps to approximately to
percentage of the volume occupied, ±5% (for instance, 0.4 objects/m2 is 35-45%
occupied volume).

For the purposes of these experiments, we assume our MAV can track the poly-
nomial trajectories perfectly, which [66] shows is possible as long as we respect
maximum velocity and acceleration bounds while planning. We add a new view-
point into the incrementally-built map and then replan once a second of simulation
time. The incremental planning methods have a maximum planning horizon of 3
meters.

The first results are for starting with an a completely empty map, and inserting
new viewpoints along the path at 1 Hz, with a sample solutions from no incre-
mental goal-finding shown in Fig. 7.4a and the quantitative results in Fig. 7.5. As
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(a) No Inc. Goal (b) Random Goals (c) RRT* (Opt.)

(d) RRT* (Cons.) (e) NBVP (f) Our Method

Figure 7.4: Comparison of methods in a small simulation case (15 × 10 meters)
with 0.3 objects/m2 obstacle density. The black line shows the final path, the
colored lines show intermediate paths, and dark blue arrows show the intermediate
goals selected by the algorithm. Only our method and NBVP were successfully
able to solve the case; both RRT* methods were unable to see the final location as
free as they do not consider sensor field-of-view in the planning, and the random
goal selection had too few replans. All methods ran for up to 120 replans.

can be seen, straight-line goal finding and purely local optimization are able to
solve only a very small percentage of the test cases. Using gradient-based goal
finding significantly increases the performance, and soft goals further increase suc-
cess rate, especially at lower densities. However, the success rates overall are still
unacceptably low.

To overcome these issues, we benchmark the intermediate goal finding methods,
described in Section 6, on the same simulation cases. Example qualitative results
are shown for all methods in Fig. 7.4. The simulations show the differences between
the methods: random goals fails to find the goal within the allocated time as the
intermediate goals are too undirected, and the two RRT*-based methods fail since
they do not consider the field-of-view of the sensor and are therefore never able to
observe the goal point as clear.

Fig. 7.6 shows the quantitative results: as can be seen, all goal-finding methods
outperform the naive optimization-only method. The optimistic RRT* performs
the worst, as it tends to select the same infeasible path over and over again as un-
known space is marked as traversable for this method. NBVP performs somewhat
better, as it uses the sensor model to maximize exploring the small area. Conser-
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Figure 7.5: A comparison of the planner success without any intermediate goal-
finding strategy, building the map incrementally. As can be seen, gradient-based
goal-finding significantly increases success chance over line-based goal finding, and
soft goal-cost further increases performance.There were 100 trials per density, with
60 replans (60 seconds at 1 Hz replanning rate).

vative RRT* performs comparatively well, as it is simply tracking the closest free
point to the goal, but has no knowledge of the sensor model.

Finally, our method performs on par with random goal selection in terms of
success rate. However, our method is able to consistently produce much shorter
path lengths: Fig. 7.7 shows the mean path lengths for simulation cases that both
random goal finding and our method were able to solve. Our method produces
paths up to 35% shorter.
The final experiment is a more realistic test of a long forest traversal. We

generate a 50 meter × 50 meter randomized map with 0.1 and 0.2 obstacles/m2,
and set the MAV to explore from one corner to the other. The results from 0.2
density are shown in Fig. 7.8, where our method and optimistic RRT* were the
only two to successfully make it to the goal. Simulation results over 20 sims at
different densities are shown in Fig. 7.9, and the timings of different aspects of our
method from this simulation are shown in Table 7.1.

8 Real-World Experiments

To evaluate our system in a real-world scenario, we performed multiple experiments
in two different test environments: a cluttered office space and a dense forest with
a variable ground height. The results of all described experiments are available at
https://youtu.be/rAJwD2kr7c0.

All of the experiments start with a completely unknown map, use visual-inertial
odometry from the forward-facing (with a 12◦ downward pitch) stereo camera,
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Figure 7.6: A comparison of the success rates for different incremental goal-finding
strategies. Note that even though there is no prior map knowledge, these methods
perform as well or better than pure replanning methods given full map knowledge.
There are 50 trials per density, and a maximum of 120 replans per trial.
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Figure 7.7: Path length comparison between random goal selection and our pro-
posed method. The path lengths are only evaluated for trials where both planners
succeeded, to allow a fair comparison. Note that our method always finds a solu-
tion in a significantly shorter path length, as it exploits current knowledge of the
environment.
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Figure 7.8: A 50 m × 50 m randomized “forest" environment, with a density of
0.2 objects/m2. The lines compare five planners: no goal selection (dark blue),
random goal finding (red), optimistic RRT* (yellow), conservative RRT* (purple),
NBVP (green), and our method (teal). All planners start in the upper-left corner
and try to reach the lower-right, but only our planner and optimistic RRT* are
able to successfully find a solution in 500 replan cycles. The planning is in 3D, so
some plans go over an obstacle.

update the map from stereo and replan at 4 Hz, and run everything entirely on
the 2.4 GHz i7 dual-core CPU on-board the robot. We use rovio for state esti-
mation [6], a non-linear MPC for position control [43], and the Asctec on-board
attitude controller. The average flight velocity was 1.0 m/s.
In the office space environment, the MAV is able to navigate from a starting

position in a hallway, around a corner, and to a point above an office table, shown
in Fig. 7.10 During the path, it successfully avoids an ajar cabinet door (which
blows open during the flight), along with many obstacles on either side of the
hallway. The MAV was only able to reach near the intended goal, as it is unable to
successfully determine whether the air-space above the tables is clear or not: the
tables are gray and textureless, and the white projector screen behind them is also
textureless, leading to a lack of stereo matches and therefore unknown space in the
map. While eventually the robot would have explored enough of the surrounding
space to clear this space, the pilot intervened when it was near the intended target.
This demonstrates the conservative and safe nature of our planner.
Our second experimental validation took place in a forest environment, where we
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Figure 7.9: Quantitative results of success rate from the long forest simulation,
limited to 500 replan cycles. While the RRT-based methods can offer good per-
formance in this situation they also sample orders of magnitude more points than
our method, and require much more time to select an intermediate goal.

Figure 7.10: Experimental results from the office navigation experiment, with
final map and intermediate paths shown on the lower right.
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9 Conclusions

Step Time [ms]

Mapping

TSDF Insert 27.0
ESDF Update 14.5

Local Replanning

Trajectory Optimization 19.3
Intermediate Goal Selection 5.9

Table 7.1: Timings for a single iteration each part of the method, aggregated from
the benchmark in Fig. 7.8. Note that intermediate goal selection will only run if
trajectory optimization fails, not every planning iteration.

performed four different experiments. In the first trial, we were successfully able
to avoid a single large tree between the start point and goal. Second, we did two
experiments where the MAV was commanded to go a large distance in its current
facing direction, where the robot successfully avoided tree branches along its way
and navigated largely along a hiking trail for up to 45.0 meters. In the shorter
experiment, the MAV was able to reach its goal. In the longer one, it was unable
to reach the final goal as the slope of the ground was too high and the tilted-down
camera did not allow it to perceive enough open space to safely raise its flying
height above the ground.

The final forest experiment tested navigation in very cluttered, obstacle-dense
environments. The MAV was commanded to fly in a very densely-forested area
between two trails, containing many small trees, branches, uneven terrain, and
other obstacles. A still image of the video, along with the corresponding robots-
eye view and the final executed path are shown in Fig. 7.1. The MAV was able to
complete a path of 34.7 meters, successfully avoiding obstacles along the way, and
finishing at the waypoint above the trail on the other side of the wooded region.

9 Conclusions

This paper presented a complete system for local obstacle avoidance, consisting
of an underlying trajectory optimization method, which uses an Euclidean Signed
Distance Field (ESDF) built by voxblox to get collision costs and gradients, cou-
pled with an exploration-inspired intermediate goal finding strategy to escape local
minima in the optimization. We showed that our combined method outperforms
the common strategy of coupling an optimistic global planner with a conservative
local planner. In the case of high obstacle densities, our exploration-based method
is able to find solutions to more planning problems. We also outperform the next-
best view exploration method for intermediate goal, as we are able to incorporate
information about the global goal and reduce the runtime of the exploration gain
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evaluation.
Our approach focuses on solving the case of very cluttered environments in previ-

ously unknown maps, and maximizing the chances of finding the goal while building
the map. To demonstrate the performance of our method in real-world scenarios,
we were able to successfully navigate through an office and through multiple forest
environments while performing all processing in real-time on-board an MAV.
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Abstract
Micro-Aerial Vehicles (MAVs) have the advantage of moving freely in 3D
space. However, creating compact and sparse map representations that can
be efficiently used for planning for such robots is still an open problem.
In this paper, we take maps built from noisy sensor data and construct
a sparse graph containing topological information that can be used for
3D planning. We use a Euclidean Signed Distance Field, extract a 3D
Generalized Voronoi Diagram (GVD), and obtain a thin skeleton diagram
representing the topological structure of the environment. We then convert
this skeleton diagram into a sparse graph, which we show is resistant to
noise and changes in resolution. We demonstrate global planning over this
graph, and the orders of magnitude speed-up it offers over other common
planning methods. We validate our planning algorithm in real maps built
onboard an MAV, using RGB-D sensing.

Published in:
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2018

DOI not yet available



Paper V: Sparse 3D Topological Graphs for Micro-Aerial Vehicle Planning

1 Introduction

One of the most fundamental problems in robotics is planning paths through known
maps, often referred to as global planning. While there are multiple classes of
solutions to this problem, including sampling-based methods like RRTs [44] and
search-based methods like A* [32], one class of solutions that has not been used
for many real problems in 3D: topological planning.

Extracting the topology of a 2D map built by a ground robot to use for planning
has been a well-studied topic, including methods that allow the topological graph
to be created incrementally and maintained online [41, 52, 108]. Most of these
methods start with a Euclidean Signed Distance Field (ESDF), also known as
Euclidean Distance Transform (EDT), of the space, where each point in a 2D grid
stores its distance to the nearest obstacle. From the ESDF, it is then possible
to generate the Generalized Voronoi Diagram (GVD) of this space by finding all
the points that are equidistant from two or more obstacles. This set of points
represents the ‘ridges’ in the ESDF and is also known as the medial axis. With
some additional filtering and generation rules, the GVD can be used to create sparse
paths through the environment which maximize obstacle clearance and preserve
topological connections within the space.

However, these approaches have scarcely been extended to 3D for robot planning.
Hoff et al. [37] and Foskey et al. [24] explored using GVDs in 3D (generated by
computing 2D slices of the GVD at various heights on GPU) given perfect CAD
mesh data of the environment for path planning. To the authors’ best knowledge,
no work has generated and used 3D GVDs for path planning on noisy, real-world
data.

The aim of this paper is to address this research gap, and explore methods
to generate descriptive, topology-preserving sparse graphs of 3D space that are
suitable for global path planning for Micro-Aerial Vehicles (MAVs). The main use-
case we target is that of multi-session flying for industrial inspection or search and
rescue applications. In our scenario, the MAV has an initial exploration mission
to build a map of the space in which it will operate. This map is then refined and
processed off-line, and a sparse topological graph representing the environment
is created. This graph can then be queried for very fast initial global plans to
return to any point in the previously-explored map, and can be further refined
with polynomial optimization techniques presented in our previous work [81, 85]
and in Fig. 8.1.

Our method starts from a dense voxel map of 3D ESDF values, built using
voxblox [83], extracts the 3D GVD or medial axis using methods inspired by graph-
ics skeletonization literature [25], and creates a skeleton diagram by preserving only
1-voxel-thick edges of the medial axis. We then fit a sparse graph, consisting of
vertices and straight-line edges, to this underlying diagram, and ensure that it
maintains connectivity. Both the map construction and planning methods are
made available open-source as part of voxblox1.

1github.com/ethz-asl/voxblox
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2 Related Work

Figure 8.1: Sparse graph skeleton (black) and paths planned through a map
created from on-board RGB-D sensing on an MAV in a machine hall. Yellow
shows the initial path planned through the skeleton, orange is a dynamically-
feasible path based on the initial path, and red is re-optimized to avoid collisions
with the environment.

The contributions of this work are as follows:
• a novel method of extracting thin skeleton diagrams from real, noisy sensor

data in dense voxel grids (Section 3),

• a method of constructing sparse, straight-line connected graphs to use for
rapid planning, which is resistant to noise and resolution changes (Section 4),

• planning evaluations showing that our method can be orders of magnitude
faster than other global planning methods (Section 6).

2 Related Work

In this section, we discuss existing robotics planning literature, with a focus on
methods that exploit the topology of the scene. We split our discussion into 2D
methods and 3D methods.

2.1 2D Planning
Thrun was one of the first to show topological grid-based planning in 2D for ground
robots [108], where he built a topological map from Voronoi Graph, focusing on
“critical points" (doorways, etc.) to divide into topologically separate regions, and
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was able to show a three orders of magnitude speed-up over grid-based planning.
More recent work has focused on building signed distance fields and GVDs incre-

mentally and in real-time. Kalra et al. introduced the original dynamic brushfire
algorithm, which is able to maintain the accuracy of the underlying signed dis-
tance field by using raise and lower wavefront propagation, and by keeping an
updated list of GVD candidates [41]. Lau et al. further extended this method to
create one-voxel-thin GVDs that better represented the topology of the underlying
space [52].

Fang et al. use 2D GVDs to inform sampling in 3D space for MAV navigation
in indoor environments [21]. They build a 2D GVD from a down-projection of the
environment, and use this to overcome the difficulties that sampling-based methods
have with narrow corridors and openings. In contrast, our method actually builds
a 3D GVD, fully capturing the geometry of the space.

2.2 3D Planning
We will cover three different categories of 3D planning: GVD-based 3D planning
in CAD meshes, building topologically-aware maps based on something other than
the GVD, and finally methods that explicitly model polygonal bounds of free-space
regions for planning.

Hoff et al. presented a 2D but 3D-applicable method for building GVDs and then
planning using potential fields in them. 3D is done with multiple 2D slices, and
computed using graphics hardware [37]. The obstacles are from a labelled CAD
model, and obstacles are defined per-object for the purposes of Voronoi boundaries
(that is, a point belongs on the GVD if it is equidistant to two distinct objects,
rather than any surface boundaries). Foskey et al. extended [37] to use a GVD for
path planning directly in the graph, and if no solution through the GVD is found,
use Probabilistic Roadmaps with sampling informed by the GVD.

Other methods for building topologically-aware graphs include SPARTAN, where
a distance field is computed up to a certain distance from obstacles [15], and
connected in straight lines between distance field boundaries. This representation
is well-suited for very sparse environments, as it allows shortcuts through large
open-space regions, but does bug-algorithm-style planning around obstacles. While
their method is based on visibility graphs, we use Voronoi diagrams as our basis.

Another method is presented by Blochliger et al., where SLAM-map landmarks
projected into an occupancy map and then free-space is grown from the original
robot map-inspection trajectory into mostly convex 3D clusters [5]. These clusters
are then connected based on overlap to create a sparse navigation graph. The
downside of this approach is that it heavily depends on the initial inspection tra-
jectory rather than the inherent structure of the space.

Finally, another representation that has advantages for dynamics-aware planning
is representing the environment as convex free-space regions. A well-known method
is IRIS [18], which iteratively breaks up a world into polygonal free-space regions
from a seed point, but takes hours to compute on any non-trivial 3D environment.
Liu et al. attempt to overcome this speed limitation by building convex free space
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Figure 8.2: System diagram of the steps to generate the skeleton diagram (which
is a dense voxel grid), and from there the sparse graph (which is an undirected
graph with straight-line edges).

Figure 8.3: The effect of noise on the Voronoi diagram. The left image, uncor-
rupted by noise, has a very sparse diagram. The right image, generated with noisy
sensor measurements, has many more edges in the diagram. Part of this work
focuses on pruning the Voronoi diagram in the presence of heavy sensor noise in
the map.

regions online, around an initial path found through A* or JPS graph search in
a discretized space [59]. However, the final path will be a homotope of the initial
A* path, so the free space regions can only be used for local refinement of the
trajectory. Similarly, Chen et al. exploit the structure of their obstacle map
representation, Octomap, to grow and merge free-space axis-aligned cubes around
an initial path and find solutions through this reduced graph, and then refine them
using polynomial trajectory optimization [14].

In contrast to all these methods, we compute the GVD-based topology of an
entire noisy map, can be built on-line on-board an MAV, efficiently represents the
underlying topology of a space, makes no assumptions about obstacle densities or
using initial graph-search solutions.

3 Skeleton Diagram Construction

Our method consists of two main components: first, building a one-voxel-thick
skeleton diagram in the voxel space, which preserves the topology and connectivity
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of the original space while having as few elements as possible, as can be seen in
2D in Fig. 8.3. This is the closest analogue to the 2D topological maps used by
Lau et al. [52]. Second, generating a sparse graph out of the diagram, which is no
longer bound to the voxel space, and instead consists of graph vertices connected
by straight-line edges.

The overall system diagram is shown in Fig. 8.2. The general order of steps is
to generate the Generalized Voronoi Diagram (GVD), or medial axis, of the space,
extract its edges and vertices, thin the diagram, then create a sparse graph by
following edges in this diagram, and reconnect disconnected subgraphs in the final
graph.

3.1 GVD Generation
In order to generate the original Generalized Voronoi Diagram, we follow the com-
mon approach of finding “ridges" in the signed distance function [24, 105]. Finding
the GVD is analogous to finding a discretization of the medial axis of the free-
space, which has been well-studied in 2D robotic planning problems [52, 108]. In
2D, the medial axis consists of connected lines that maximize the distance from
obstacles, as shown in Fig. 8.3. However, since the medial axis has one dimension
less than the original shape, when this is generalized to 3D, the medial axis consists
of (potentially curved) planes that maximize this distance. To make the problem
as sparse as possible for planning, we discard the planar representation and aim
instead to find the medial curve skeleton, which consists of 1-voxel-thick lines in
3D. This is analogous to the edges and vertices of the 3D GVD, discarding the
faces.

We begin with the same general approach as Foskey et al. [24] to find all the
points that belong on the medial axis. To do this, we iterate over all voxels in the
ESDF that are in free space, and compare their parent direction with the parent
direction of their 6-connectivity neighbors. Each voxel stores the direction to its
“parent" point on the object surface (the closest occupied point to the voxel). Note
that we could also follow the 2D approach of Lau et al. [52] and store the GVD
candidates from the termination of the wavefront to avoid having to check all the
voxels in the map.

When the medial axis is constructed from CAD-generated data, where it is
known which surface belongs to which object, it is sufficient to check if the neigh-
bors have different parents or basis objects [37]. However, with noisy real-world
data and discretized map representations, as show in Fig. 8.3, it is difficult to tell
which points belong to which objects, and noise on the surface boundary creates
many spurious medial lines.

To combat this problem, we adapt the θ-SMA approach [25], which creates a
simplified medial axis (SMA) based on a minimum θ angle between basis points.
In our discretized ESDF, we compute whether a point belongs on the medial axis
using:
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(a) (b)

(c) (d)

Figure 8.4: Different methods of generating the edges of the medial axis/GVD. a
shows the edges generated by counting the number of basis points, b shows edges
generated by number of neighbors that are also on the medial axis, c shows edges
from b thinned using topology-preserving erosion techniques, and finally d shows
the same technique applied but without extended end-point checks, note especially
the edges preserved in the red circle. Color represents the distance to the obstacle.

np + nd

‖np + nd‖
•

vp

‖vp‖
< cos θ, (8.1)

where vp is the parent direction of the current voxel, nd is the direction from the
neighbor voxel to the current voxel, and np is the parent direction of the neighbor
voxel.

Passing this check means that the point has at least two distinct basis points on
object boundaries.

3.2 Edge Extraction
Now that we have all the points that belong on the medial axis, we need to classify
them as edges, vertices, and faces, as we aim to only keep the one-voxel-thin lines
that sparsely describe the topology of the space.

In a perfectly modeled environment, the edges of a 3D GVD are defined as
having three basis points, and vertices as having four [37]. However, due to dis-
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(a) (b)

Figure 8.5: Voxel templates for thinning, a is the 4 deletion templates from
[102], and b is our template to check whether a point is a 6-connected corner
or not. Black points indicate foreground points (in our case, GVD edge points),
white is background (non-edge points), and unlabelled match both foreground and
background points.

cretization error, and the actual Voronoi boundaries falling between voxels, some
edges disappear and spurious edges appear by this definition, as shown in Fig. 8.4a.

Since the Voronoi boundaries are also edges of the faces of the medial surface,
we instead choose a method more stable to discretization error and noise in the
boundaries: extracting edges of the medial axis, to create medial lines. We use the
metric of how many of the voxel’s 26-connected neighbors belong to the medial
axis to determine whether it is an edge. We preserve all voxels with at least 18
neighbors, which creates the thick but complete skeleton in Fig. 8.4b.

However, even this definition is not free of errors introduced by discretization,
especially depending on the size of the voxels. Lau et al. suffered the same prob-
lem in their 2D GVD, where many lines are two-voxels-thick, and create spurious
connections. Their solution was to introduce two connectivity templates, which
all pixels on the GVD were verified against to ensure that they were necessary to
maintain the topology of the graph. However, since 3D topology is much more
complex, it is not sufficient to verify our edge voxels against connectivity tem-
plates; we must instead do a topology- and connectivity-preserving 3D thinning
operation, described in the section below.

3.3 Thinning
In order to remove spurious double lines, we refer to digital topology literature
which builds 3D skeletons out of discretized shapes using recursive thinning [55,
63, 102].

We follow the general approach described in Lee et al., which would also allow
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parallelization of the thinning operation [55]. First, all voxels that are part of the
shape are checked against one of several deletion templates. We choose to use the
patterns from She et al. [102], due to their simplicity and not requiring more than
the 3 × 3 neighborhood for every voxel, shown in Fig. 8.5a. The neighborhood of
the center voxel is evaluated against these templates. In the templates, a point
may be either foreground (black, edge or vertex neighbor), background (white, face
or non-GVD neighbor), or “don’t care" (unmarked). “Don’t care" points can match
against either value.

Once a point is shown to match one of the templates (or any of its 90◦ rotations
or mirror operations), it can be removed if it is a simple point: that is, if the
connectivity of its neighbors would be preserved without it [55], and not an end-
point: has more than one 26-connected neighbor. This definition is both for groups
of connected foreground voxels (connected using 26-connectivity) and connected
background voxels (connected using 6-connectivity). Therefore, to verify that a
point is simple, we need to verify that the number of connected components in its
neighborhood remains the same without it. We do this using the octree adjacency
tests proposed in Lee et al. [55].

However, since our edge-extraction heuristic produces 6-connected edges, re-
moving all simple points that are not end-points leads to incorrect removal of
some diagonal edges. This is due to the simplicity of the end-point test: a 6-
connected end-point actually has 2 26-connected edges. Classifying any point that
only has one 6-connected neighbor leads to incorrect preservation of many other
points. (This is not a problem encountered in medial skeleton construction through
thinning, since the thinning is applied recursively and should always lead to only
26-connected components.)

To combat this issue, we extend the end-point test with a “corner template",
shown in Fig. 8.5b. A point is considered an end-point if it has only one 26-
connected neighbor, or if it has no more than one 6-connected neighbor and matches
the template (and its rotations and mirrors) in Fig. 8.5b.

The results of this thinning operation is a fully-connected, one-voxel-thin skele-
ton, shown in Fig. 8.4d. This state of the map is referred to as the skeleton diagram
for the remainder of the paper, and is analogous to the GVDs used for planning in
2D literature.

4 Sparse Graph Generation

To further sparsify the problem, we approximate the skeleton diagram with a sparse
graph, using the steps described in this section.

4.1 Vertex Extraction
After our skeleton is only one-voxel-thick, we are able to extract vertices very
simply: finding all edge voxels that have 1 or more than 3 26-connected neighbors
that are edges. The results of this are shown in Fig. 8.6a, with red circles indicating
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(a) (b)

(c) (d)

Figure 8.6: Steps in the process of vertex generation, with red circles as sparse
graph vertices and blue connecting lines as sparse graph edges, overlaid on top of
the GVD edges. a shows a connected sparse graph, without any pruning of vertices.
b shows the result with k-D tree pruning; as can be seen, some edges pass through
obstacles. c shows the results of splitting the edges any time they deviate too far
from the straight line by inserting a new vertex, and d shows the results if the
splitting also attempts to match to a nearby vertex (removing duplicated near-by
vertices seen in c).

vertices. As can be seen, there are many redundant nearby vertices due to this
definition. While they are technically correct, they clutter the sparse graph and
add no new topologically-distinct paths.

In order to ensure that the graph we build in the next stage is as sparse as
possible, we prune the vertices in the GVD. We build a k-D tree of the nearest
vertices, and for each vertex in the GVD, find all other vertices that are within a
pruning radius rprune. From these vertices, the one with the largest distance to
obstacles is retained, and all others are removed. The results of this operation are
shown in Fig. 8.6b.

4.2 Edge Following
The next step is to trace straight-line edges between the sparsified vertices obtained
from the previous section. The goal is to create a graph that is independent of the
resolution of the underlying map, and is significantly faster to search through as
all connectivity information is pre-computed.

We start with the filtered diagram vertices from the previous step. Each vertex
is assigned a vertex ID, which is also marked in the diagram, and inserted into a
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map of vertex IDs to vertex information. For each vertex, we attempt to follow
the diagram edges to find connections to other vertices.

This is done as follows: first, for each vertex, we check its 26-connectivity neigh-
bors for edges. For each edge, we recursively follow it through the diagram, by
checking all its neighbors and preferring those most in line with the current direc-
tion of the edge:

min
(
(vd − rd) • −nd

)
, (8.2)

where vd is the direction taken to get to the current voxel, rd is the direction from
the vertex, and nd is the direction from the current voxel to the checked neighbor.

Directions that are not followed are stored in a stack (FILO), and in case there
are no more viable adjacent neighbors, the latest candidate is popped off the stack.
This procedure is followed until a vertex voxel is reached, then its corresponding

entry in the sparse graph is found, and an edge connecting the originating voxel
and the new one is created.
The results of the complete graph generation procedure, including edges shown

as straight blue lines, is shown in Fig. 8.6b. As can be seen, some edges do not
sufficiently represent the structure of the underlying diagram: for instance, some
curved edges are represented as straight lines and as a result pass directly through
an obstacle. This is obviously undesirable in a graph used for planning.

4.3 Edge Splitting
In order to prevent edges going through non-free space, we split edges that deviate
too far from the straight-line path. This is done as follows: first, for every edge in
the graph, we use diagram A* (described below in Section 5.2) to find the shortest
path in the diagram from the start vertex to the end vertex. Every point in this
diagram edge is then projected onto the straight-line between the start and the
end vertex, and its distance to the line is calculated. If the maximum distance
along this edge exceeds a threshold (for instance, we used twice the voxel size),
then a new candidate vertex is created at the point on the diagram with maximum
distance.
Making every candidate vertex into a real vertex gives the results in Fig. 8.6c:

while the edges now match the shape of the diagram edges, there are some cases
where unnecessary vertices are created: that is, locations where there is already a
vertex nearby that the edge should have been connected to instead. To counteract
this case, we add another check before adding a candidate vertex as a new vertex:
if there is another vertex within rprune of the candidate, then use diagram A*
to verify that a valid connection exists to both the start and the end vertices.
This vertex candidate is considered only if connecting to it reduces the maximum
distance to the straight-line.
The results of this final step are shown in Fig. 8.6d, where it can be seen that

significantly fewer extra vertices are made, and shorter edges to existing vertices
are established.
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4.4 Disconnected Sub-Graph Repair
In some cases for large, cluttered maps, such as the maze we will use in Section 6.2,
some edges that are present in the diagram are not re-connected correctly in the
sparse graph due to discretization error. This leads to multiple disconnected sub-
graphs.

We solve this problem by first determining the number of subgraphs and which
vertices belong to them. For each vertex in the graph, if it is unlabelled with a
subgraph ID, we assign it a new subgraph ID and perform the flood fill algorithm
to label all the vertices that belong to its subgraph. The flood fill algorithm is a
simple recursive depth first search, where we set the label of each vertex, follow
all the edges from that vertex, and continue until no un-labelled vertices that are
reachable by edges remain.

After each vertex is labelled, we perform two steps: first, remove all subgraphs
that contain only one vertex, as these are not helpful in planning. Second, attempt
to connect all the remaining subgraphs to each other.

We do this by using A* through the skeleton diagram. We select the first labelled
vertex in two disconnected sub-graphs, and attempt to find a path between them
along the underlying skeleton diagram. If A* is able to find a path, we trace back
through it, checking every voxel along this path. For every voxel that is assigned a
sparse-graph vertex ID, we record its ID and label. When the labels between two
consecutive vertices change, we add an edge between those vertices and perform
flood fill to re-label the new connected graph.

Note that this approach may connect more than just the start and end subgraph,
if other disconnected subgraphs are encountered on the path. All new added edges
are again checked for straight-line connectivity with the method described in the
previous section.

We refer to the final state of this graph as the sparse graph for the purposes of
planning.

5 Planning Algorithms

In this section, we will describe various ways to use the information contained in
the ESDF, skeleton diagram, and sparse graph for path planning. These methods
will be evaluated and compared in the results in Section 6.2. For each of these
methods, we model the MAV as a sphere with a fixed radius. The GVD was
generated with a minimum distance of this radius, so only valid traversible nodes
are present in the graph.

For the first four planning methods, we focus on the goal of quickly finding
a feasible initial path through the space, considering non-collision with obstacles
as the only requirement. This initial path will then be refined to be a smooth,
dynamically-feasible trajectory for the MAV using polynomial splines and the prop-
erty of differential flatness, as described in Section 5.5 below.
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5.1 A* through ESDF
The simplest method to find a path through the space is to run A* [32] on the
ESDF voxels. For each voxel, starting from the start location, we expand its 26-
connected neighbors and consider them part of the graph if their ESDF distance
is greater than the robot radius. We use the straight-line distance to goal as an
admissible heuristic, and accumulate voxel adjacency distances.

Though this approach is resolution-complete, it becomes prohibitively expensive
in larger spaces or smaller voxel sizes due to the massive size of the graph.

5.2 A* through Skeleton Diagram
A much faster approach is to search only through the skeleton diagram. The
heuristics and costs remain the same as in the ESDF A*, but a voxel is considered
a valid neighbor if it is an edge or a vertex in the skeleton diagram.

One important consideration is that the start and end points may not necessarily
be on the diagram. To counter this, we start an A* search through the ESDF from
the start toward the goal, and abort as soon as it expands a vertex that is also on
the diagram. We also start the same search backwards: from the goal toward the
start. These two searches quickly find the start and end points on the diagram.

5.3 A* through Sparse Graph
The final speed-up is to traverse the sparse graph rather than the underlying dia-
gram, as the graph keeps a mostly consistent size regardless of voxel size or noise
level, as shown in Section 6.1.

We find the sparse graph vertices closest to the start and end points by searching
for the nearest neighbors in a pre-built k-D tree structure. We then use A* to
traverse the edges toward the goal vertex.

5.4 RRT through ESDF
We also compare to a more traditional method of global planning, based on
sampling-based Rapidly-Exploring Random Trees (RRTs). We evaluate both RRT* [44],
which is probabilistically-optimal (that is, it is guaranteed to find the optimal solu-
tion given infinite execution time) and RRT Connect [49], which has no optimality
guarantees but in practice quickly finds a sub-optimal feasible path. In both cases,
we treat unknown space as occupied and do collision-checking directly in the ESDF.

Unlike the search-based methods described above, which exhaustively search
a graph toward the solution, RRT-based methods sample feasible points in the
planning space and attempt to connect them to the existing tree. Once the goal
state has been sampled and connected to the tree, the tree is traversed to get the
final path. In RRT Connect, the tree is grown bi-directionally from both the start
and goal. In RRT*, the initial path continues to be refined with shorter path-length
solutions until a time limit is reached.
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5.5 Dynamically-Feasible Trajectory Generation
Finally, given an initial straight-line path from any of these methods, we need to
create a trajectory that the MAV can dynamically follow. We exploit the prop-
erty of differential flatness to plan dynamically feasible polynomial splines. Since
the splines may deviate from the initial straight-line solutions and no longer be
collision-free, we use local trajectory optimization using the ESDF distances as
collision costs to iteratively “push" the final trajectory out of collision, as described
in our previous work [81, 85].

6 Experiments

In this section aims to validate our method on simulated and real-world data and
analyze the effect of noise and voxel size on the resulting sparse graph. We also
compare the different presented planning approaches, and finally show results on
real maps from an MAV flight with generation of dynamically-feasible paths.

6.1 Sparse Graph Construction
We aim to show that the sparse graph construction method preserves the under-
lying structure of the scene, even in the presence of noise or different levels of
discretization error (different voxel sizes). To do so, we construct a simulation
world for which we have both the ground truth ESDF and are able to simulate
synthetic viewpoints within this space, optionally corrupted by noise.

We generate the skeleton diagram and sparse graph for a variety of voxel sizes
and noise magnitudes, shown in Fig. 8.7. The top row shows the sparse graph
built from perfect ground truth data acquired from the simulation. The following
nine scenarios show the same simulated world, reconstructed from 200 randomly
selected robot poses with a simulated depth sensor. The sensor has a 90◦ field
of view and 320 × 240 resolution. Optionally, we apply independent Gaussian
noise to each distance measurement, with σ = 0.1 or 0.2. These scans are then
incrementally integrated into a Truncated Signed Distance Field (TSDF), and we
construct the ESDF from this TSDF using full Euclidean distances, as described
in our previous work [83].

While it can be seen that noise and discretization error corrupt the graph by
adding extraneous edges, the fundamental structure of the graph remains the same.

Another important effect of the sparse graph representation is that its size stays
largely constant regardless of the size of the underlying diagram. This is shown
in Fig. 8.8, where we compare the number of elements on the skeleton diagram
(circles) and in the sparse graph (crosses). Even though the voxel size (and to
a lesser extent, noise level) has a large impact on the number of elements in the
skeleton diagram, the number of elements in the graph remains almost constant.
This shows the robustness of our approach to different resolutions and corruption
by noise.
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Figure 8.7: A comparison of sparse graphs generated from the same simulated
environment, under different voxel sizes and amounts of noise in the distance mea-
surements. The top row is simulated from ground truth ESDF data, while the
other 3 rows show maps created from 200 simulated robot poses with a noisy
depth sensor. As can be seen, despite extraneous edges introduced by noise or dis-
cretization error, the core structure of the graph remains the same. The diagram
was generated with a minimum distance of 0.4 meters.
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Figure 8.8: A comparison of the number of elements in the skeleton diagram
(circles) and sparse graph (crosses). As can be seen, the voxel size and, to a lesser
extent, noise level have a strong impact on the number of elements in the diagram,
but the graph size stays mostly the same. This implies that the graph size is a
function of the topology of the space, not the resolution or quality of the map.

6.2 Planning
To evaluate the ability of our method to very quickly generate initial feasible paths
through complex environments, we set up a maze environment in simulation, and
allowed a simulated MAV equipped with a forward-facing stereo camera to au-
tonomously explore it using a next-best-view exploration algorithm [3]. The maze
environment is 30 m by 30 m, represented by a map with 10 cm voxels. We
then take the map created from this exploration and generate the ESDF, skeleton
diagram, and sparse graph from it.

We use the methods described in Section 5 to plan between two locations in the
maze, shown in Fig. 8.9. As can be seen, the sparse graph representation of the
maze (red vertices and dark blue edges) appears to be a good descriptor of the
underlying structure. While all the planning methods find largely similar paths,
there are a few differences, since ESDF A* (yellow) and RRT* (green) are not
bound to staying on the diagram (orange) or sparse graph (cyan).

However, the major difference is in the execution time, shown in Table 8.1. The
RRT* takes approximately 2.5 seconds to find the initial solution, while an A*
search through the complete ESDF takes over 7 minutes. In contrast, a search
through the diagram takes only 50 ms, and the sparse graph search takes only 3
ms.

It is also interesting to look at the path lengths; clearly our proposed method
does not produce the shortest paths. It does produce the maximum-clearance
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Figure 8.9: Sparse graph (dark blue edges and red vertices) and planning results
through a 30 m by 30 m maze, autonomously explored by an MAV in simulation.
Green shows the first RRT* path to the goal, yellow is A* through the ESDF,
orange is A* through the skeleton diagram, and cyan is the search through the
sparse graph.

Planner
Time
[s]

Path
Length [m]

Solution
Ver-
tices

RRT* 2.500 62.079 39
RRT Connect 0.1530 108.07 68
A* ESDF 452.3 72.26 627
A* Skeleton Diagram 0.0503 92.876 732
Sparse Graph 0.00328 86.178 110

Table 8.1: Quantitative results for planning through the maze, shown in Fig. 8.9.
Our method (sparse graph) is 800 times faster than the initial solution of RRT*,
and even 50 times faster than the RRT Connect. It produces slightly longer paths
since it is bound to the maximum-clearance graph.
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Figure 8.10: Timing information for the platform experiments, shown in Fig. 8.1.
The map is 20 m by 22 m at 0.07 m voxel resolution. The total time to generate
the sparse graph from the ESDF was 2.13 seconds on the MAV on-board computer.

path through this space, and can be further shortened by polynomial smoothing
and optimization, as described in Section 5.5. The most important advantage of
our method is that it takes almost 3 orders of magnitude less time to find this
initial path using the sparse graph search than using RRT*.

6.3 Platform Experiments
To demonstrate the feasibility of this method on real data, we performed a flight
through a machine hall with a custom-built drone, using ORB SLAM2 for state es-
timation and loop closure, and dense mapping of RGB-D data through the submap-
ping approach described by Millane et al. [67]. This shows the intended use-case
of this work: performing an initial exploratory flight with an MAV, quickly con-
structing a skeleton of the optimized map as shown in Fig. 8.10, and then using
the topological map to rapidly plan return paths.

The results are shown in Fig. 8.1, where the sparse graph edges are shown in
black, an initial path through the graph in yellow, and we use the techniques
described in our previous work to get an initial dynamically-feasible polynomial
path through a subset of the vertices (orange) and optimize it to be collision-
free (red) [81, 85]. A video showing the experiments and results is available at
youtu.be/U_6rk-SF0Nw.
This shows that we are able to quickly produce useful topological graphs to aid

in global path planning from real sensor data from an MAV.

7 Conclusions

In this paper, we proposed a method to build 3D skeleton diagrams and sparse
graphs that maintain the topology and connectivity of the original space, by us-
ing a combination of techniques from 2D Voronoi Diagram-based planning and 3D
graphics skeletonization literature. Our method is robust to noise and resolution
changes, and is shown to speed up global planning search queries by up to 800
times over initial solutions to RRT*. We also show its applicability to real maps
built in-flight on an MAV, and demonstrate how our graph can be used to plan
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7 Conclusions

optimized trajectories based on the fast initial solution. Future work would in-
clude adding clearance information to the sparse graph and making the method
completely incremental.
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1 Introduction

Autonomous navigation from on-board sensing is essential for Micro-Aerial Vehicles
(MAVs) in many applications. Specifically, we want to create MAVs that can
assist human operators in difficult inspection tasks in search and rescue (S&R)
and industrial applications. To address both of these needs, we do not use GPS,
and focus on online mapping and planning from only vision-based sensors.

This paper aims to present a complete system capable of performing repeated
inspections of the same scene. Our previous work proposes mapping [83] and
online re-planning [81, 85] methods for safe navigation of previously-unexplored
spaces. We focus specifically on explicitly mapping free space in very cluttered
environments, and exploring planning strategies that are inherently conservative:
that is, they only allow traversal of space that is confirmed to be free. Here we aim
to extend the local planning work to also cover global planning scenarios, where a
map is already available (either on the return route of the current mission or from
a previous mission).

We compare various global planning methods, including improving on our previously-
proposed topological graphs built from Euclidean Signed Distance Fields (ES-
DFs) [86]. We also extend our local replanner to be used as a path-smoothing
method for converting lists of waypoints from global planners to dynamically-
feasible timed trajectories. All planning methods are evaluated on three realistic
scenarios, two from a search and rescue training area, and one from an industrial
environment with large machinery, recorded with the MAV system described in
this paper.

The aim of this work is to serve as a reference for the complete system needed
for these applications, requiring no off-board processing or external sensing. This
set-up allows the robot to be robust to loss of communication (which is typical
in real S&R scenarios), and behave intelligently and safely even when not under
direct control of a human. We discuss the control, state estimation, sensor, and
hardware concerns and requirements for such systems, and make the software for
all parts available open-source.

The contributions of this work are as follows:
• We present a complete open-source system for autonomous GPS-denied nav-

igation,

• A thorough treatment of considerations in 3D mapping for planning applica-
tions, expanding on our previous work [83] with regards to unknown space
and generation methods,

• We extend our previous work on topological sparse graph generation [86] to
create more useful graphs, faster,

• A discussion and comparison of various global planning methods,

• We extend our previous work in local planning [81, 85] to also be usable for
path smoothing and compare to several competing methods.
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2 Related Work

Figure 9.1: The platform used for collecting the test datasets, a custom-built
drone using the DJI FlameWheel F550 frame, an Intel NUC for on-board pro-
cessing, Pixhawk for flight control, VI Sensor for monocular state estimation and
stereo depth, and an Intel RealSense D415 for RGB-D input.

2 Related Work

We will give a very abbreviated overview of related work, as more thorough dis-
cussions of all parts are available in our previous work [81, 83, 85, 86].

We aim to show a complete system for mapping and planning on-board an au-
tonomous UAV, using vision-based sensing. Lin et al. [57] presented a similar
complete system, spanning visual-inertial state estimation, local re-planning, and
control. However, there are a few key differences between the frameworks pro-
posed: ours focuses strongly on the map representation we use and exploiting all
the information within, while their uses a standard occupancy map. More im-
portantly, our planning is conservative, meaning we will only traverse known free
space, while theirs assumes unknown space is free. Therefore, we must make more
considerations about the contents of our map with these restrictive assumptions.
We also offer an evaluation of global and path smoothing planning methods.

Mohta et al. [69] also propose an autonomous system for fast UAV flight through
cluttered environments. There are a few key differences with their work, especially
on mapping and planning. They use a LIDAR as the main sensor, which gives
360◦ field of view for collision detection, removing many of the issues with narrow
field of view sensors which we attempt to address in this work. They also only keep
a small local 3D map, and use a global 2D map to escape local minima, whereas
we use a full global 3D approach at comparable computation speeds. For how the
mapping is used, they attempt to break the world into overlapping convex free-
space regions, which grows in complexity and is increasingly more limited as the
space gets more complex, while we always plan directly in the map space. They
also make no considerations for how drift will affect the map other than to keep
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Figure 9.2: Overall system architecture, showing most key components of the
system, and the data flow between mapping and planning. A second use-cases is
shown in purple, where a previously-optimized global map is available for a mission.

only a local 3D map.
Finally, the system we propose is conceptually similar to the original system in

our previous work [8]. The core differences are that we improved every individual
component, designed and evaluated a custom mapping system, and proposed a
way to do local re-planning as well (whereas the previous work was only global
planning). This makes the system proposed in this work much more robust and
able to deal with changes in the environment.

3 System Overview

We describe a complete MAV hardware and software system capable of supporting
autonomous flight with only on-board vision-based sensing. All of the software
described in the system has available open-source with provided links.

3.1 Overall Architecture
We show an overview of the complete system in Fig. 9.2, focusing on the data
flow between mapping and planning processes. Stereo and depth images can be
used interchangeably for the mapping, combined with a pose estimate from visual-
inertial monocular odometry. The odometry is then fused with the body IMU of

114



3 System Overview

the MAV to create a high-rate pose estimate used for control. Position control runs
on the on-board computer, and gives roll, pitch, and yaw-rate commands to the
attitude controller on the flight controller. The output of the planning stack are
timed trajectories, sampled at the position controller rate (typically 100 Hz). Since
we use a model-predictive controller (described in more detail below), this allows
us to have a much higher trajectory tracking accuracy due to the long control
horizon.

The diagram shows operation set up over two stages: the first is online flight
through completely or partially unexplored space, in white, and in purple global
planning in previously-built maps. This system allows us to do an initial flight,
optimize a map using off-line tools, then perform repeat inspections in the same
area. Using a local planner on the output of the global planners guarantees that
even if the environment changes between missions, we are able to safely navigate
through it by replanning locally. Likewise, we can use the same tools without
stopping to optimize a map – for instance, using a global planner to return home
at the end of a mission.

3.2 Hardware
Fig. 9.1 shows the MAV used to collect the evaluation datasets and test the overall
system. It is built around a DJI FlameWheel F550, with 6 motors for actuation.
The low-level control is performed with a pixhawk1, using custom firmware that
accepts attitude and yaw-rate commands 2. This is necessary as we do not use
GPS and fly indoors and in other environments where magnetometer readings
are unreliable, therefore giving an absolute yaw reference is both undesirable and
meaningless in our local coordinate frame.

On-board processing, which runs everything shown in Fig. 8.2, is performed
on an Intel NUC. The main sensor is a custom-made visual-inertial sensor [78],
with two monochromatic cameras in a stereo configuration, hardware-synced to an
ADIS448 IMU. It is used for mono visual-inertial state estimation, and also for
stereo depth for mapping. Optionally, we also use an Intel RealSense D415 for an
additional source of RGB-D depth.

Though a dedicated visual-inertial sensor is a nice-to-have for such platforms,
there is currently not one available off the shelf that is suitable for MAV flight.
Instead, we recommend using a USB machine vision camera, and hardware time-
synchronizing it to a flight controller. We make a sample driver implementing this
for the FLIR Blackfly or Chameleon 33 and the pixhawk available4. This set-up
is also extendable to multi-camera systems, as multiple cameras can be triggered
from the same pulse.

1pixhawk.org
2github.com/ethz-asl/ethzasl_mav_px4
3ptgrey.com/blackfly-usb3-vision-cameras
4github.com/ethz-asl/flir_camera_driver
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3.3 Control
We use a cascaded control architecture, with an inner loop that controls attitude
and runs at a minimum of 100 Hz on the MAV autopilot, and an outer position
control loop that runs on the on-board computer at 100 Hz. For the outer loop, we
use a non-linear Model Predictive Control (MPC), proposed by Kamel et al. [42]
and available open-source5.
The MPC takes in the body odometry estimates from MSF (described in Sec-

tion 3.4) and a timed full state trajectory to track. We exploit the properties of the
flat state for MAVs to only need to specify position, yaw, and their derivatives [66].

One of the advantages of using an MPC over a PID loop for trajectory tracking is
that the MPC is able to look ahead at future trajectory points, and minimize track-
ing error over the complete horizon. This means that overall trajectory tracking
performance is improved significantly, and there are advantages to planning high-
fidelity, dynamically-feasible trajectories, as they will be executed almost perfectly.

The non-linear MPC also has a very long horizon of 3 seconds, or 300 timesteps.
While this is very convenient for executing long complex global trajectories, special
care must be taken when using it for online replanning. Namely, we need to
timestamp our entire trajectory to be monotonically increasing, and trajectory
updates must be inserted into the correct place in the MPC queue. The queue
is cleared if a trajectory with a time before the current execution time is sent,
and the new trajectory replaces the complete queue. Fig. 9.3 shows an example
of a replan cycle, happening for the purposes of the illustration at 50 Hz. The
MPC queue is initialized with a starting trajectory. The local replanning “locks”
the beginning of the initial trajectory, including the first 20 ms which is when the
controller will receive the updated trajectory, and also another 30 ms look-ahead
so that the reference does not change too quickly, then replans starting at 50 ms.
A 3 second chunk, starting at the 50 ms, is then sent to the controller queue, which
inserts the updated trajectory at the correct time, even though it has only executed
up to 20 ms.

This queueing scheme allows us to replan at any given rate, while making sure
that the controller always has a reasonable trajectory within its time horizon.

3.4 State Estimation
All state estimation is done on-board and not using external sensing (i.e., no vicon
or GPS). This gives our system flexibility to be used in complex GPS-denied en-
vironments. Our main state estimator is Rovio6, which is a robust visual-inertial
odometry framework [6], [7]. Rovio is a filter-based estimator, which uses di-
rect photometric error on a small number of patch features in the image. For
our application, this design has a few distinct advantages over more traditional,
keypoint-based methods like Okvis [56]: a filter with a small state-space (using
only 25 features) is fast to compute, even on the on-board CPU, and using direct

5github.com/ethz-asl/mav_control_rw
6github.com/ethz-asl/rovio
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Figure 9.3: Diagram showing the MPC queue, and how it is updated when a
section of the trajectory is replanned. Note that slightly more of the trajectory is
locked down than is executed during the planning time. This allows the MPC to
not have very abrupt changes in reference.

photometric error makes the method resistant to motion blur. In our experience,
Rovio is comparably accurate to other methods such as Okvis and VINS-mono [92],
but more robust under real conditions.

However, Rovio only gives us the odometry in the sensor frame, which for our
system is usually the IMU that is part of the visual-inertial (VI) sensor. Rovio also
only outputs updated poses at the camera frame rate. Depending on the hardware
set-up, we have two solutions to receive body-IMU-frame odometry at 100 Hz.

If using a separate VI sensor, then the odometry estimate from Rovio must be
transformed into the body frame and fused with the body IMU. This is done using
Multi-Sensor Fusion (MSF) [62], which is a highly-configurable filter capable of
taking multiple sensors and pose sources7.

In another configuration, where the only IMU on the system is hardware time-
synchronized to a camera, no transformation or fusion needs to be done. We only
need to use the estimated Rovio biases to propagate the odometry estimate using
incoming IMU measurements. This is done using a package called odom_predictor,
which queues incoming IMU measurements and re-applies them when new (de-
layed) estimates are available from Rovio. It is also available open-source8.

7github.com/ethz-asl/ethzasl_msf
8github.com/ethz-asl/odom_predictor
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3.5 Localization
This paper aims to address issues with creating dynamically-feasible global plans.
However, global planning requires global localization. Since all visual- and visual-
inertial odometry frameworks drift, no matter how little, long-term operation or
operation in previously-explored environments requires the ability to perform loop-
closures.

To localize against a global map, we use maplab [98], an open-source9 framework
for creating, storing, optimizing, and localizing in visual-inertial maps.

To create global maps, we first generate a sparse pose-graph of landmarks in the
observed scene. This is done by using Rovioli [98], a front-end for Rovio that also
does feature tracking and extraction (independently of Rovio’s 25 tracked patch
features).

This sparse graph can then be loop-closed and optimized using bundle ad-
justment in an offline process, giving optimized, globally-consistent poses for all
keyframes. To generate the global map, we can then replay all pointclouds from
the initial flight and integrate them into a dense map using optimized poses. Local-
ization in the matching sparse map will then line up correctly with the optimized
dense map.

If using ORB-SLAM [73] as the SLAM system, a better approach is to build up
a dense map using submaps, and only fuse them when the covariance between their
relative poses is small enough, as presented in our previous work [68]. This allows
us to get a globally-optimal dense map in a single step, without having to run a
recorded dataset through an offline framework. However, since ORB-SLAM does
not support localization against a previous map, this limits us to global localization
within a single mission.

4 Dense Mapping

Dense mapping is key to planning performance, as a plan can only be as good as
the map. We use a flexible mapping framework called voxblox10, introduced in
our previous work [83]. The framework is centered around using Signed Distance
Fields (SDFs), or voxel grids of distance values to surfaces. We use two different
types of SDFs: Truncated Signed Distance Fields (TSDFs), based on Curless and
Levoy [16] and KinectFusion [74] for integrating point cloud data, in a method
that gives a more accurate surface estimate than occupancy-based methods, but
uses projective distances and truncates the value to a small band around surface
crossings. The second type of field is a Euclidean Signed Distance Field (ESDF),
which store Euclidean, rather than projective distances to each obstacle, and are
not truncated to a specific range. These ESDFs are then the representation we use
for planning, as they contain collision information for the entire map, and can also
be used to quickly get obstacle gradients, which will be essential for some of the

9github.com/ethz-asl/maplab
10github.com/ethz-asl/voxblox
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Figure 9.4: Voxblox system diagram, showing how the TSDF and ESDF layers
are interconnected through integrators.

planning methods below. A system diagram showing inputs, outputs, and data
flow is shown in Fig. 9.4.

4.1 Euclidean Signed Distance Fields
This section will discuss how an ESDF is computed from a TSDF. A more thorough
analysis, including upper bounds on error introduced by various assumptions and
a comparison with occupancy-based methods is offered in our previous work [83].

While it might seem unintuitive that there is a non-trivial process to convert
from a TSDF to an ESDF, this is because the distances in both representations
are computed differently. TSDFs use projective distance, or distance along the ray
cast from the sensor to the surface. These distances are fairly accurate near surface
crossings, but quickly accumulate large errors [82]. In contrast, an ESDF needs
true Euclidean distances, which can only be calculated in a global fashion. Luckily,
incremental algorithms exist for computing ESDFs from occupancy maps [51], and
our work extends these methods to also work from TSDFs.

Generating the ESDF is done in three stages, detailed in Fig. 9.5: propagation
(a), raise (b), and lower (c). The first, and most different from occupancy-based
methods such as [51], is the TSDF to ESDF propagation. Due to the inaccuracy
of TSDF distance estimates, we define a radius called a “fixed band” around the
surface, which must be at least one voxel size and at most equal to the truncation
distance. TSDF values that fall within this band are considered fixed, copied into
the ESDF, and can not be altered in the ESDF update. Next, updated voxels may
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4 Dense Mapping

simply retain their value, or be put into the “lower” wavefront (when their updated
distance values are closer to the surface than before) or the “raise” wavefront (when
their values become farther from the surface). If performing a batch update (i.e.,
the entire layer at once), all voxels will go to the lower wavefront.

After propagating all updated values from the TSDF into the ESDF, we then
process the raise wavefront. This consists of simply invalidating all voxels in the
wavefront and their children. Since each voxel stores its “parent” (if the voxel is in
the fixed band from the TSDF, it is its own parent), this is then an incremental
brushfire operation. All voxels cleared from the raise wavefront have their still-
valid neighbors added to the lower wavefront, to guarantee that their values get
updated.

The lower wavefront behaves similarly to the occupancy case: iterate over all
voxels in the lower wavefront, if their neighbor’s distance to the surface can be
lowered through the current voxel, then update the neighbor and add it to the
lower wavefront. Special distinctions must be made when implicit zero-crossings
exist: i.e., two voxels are neighbors with opposite signs, and neither is fixed. This
case is further explained in Fig. 9.5c.

4.2 Unknown Space
A key problem with mapping for collision avoidance is deciding how unknown space
is handled. There are two options: treating all unknown space as free (optimistic),
and treating all unknown space as occupied (pessimistic or conservative).

While many local collision avoidance works treat unknown space as free and
have a high replan rate to avoid collisions [14], this is inherently unsafe. While
it works well in uncluttered environments, where most unknown space is free,
this assumption gets progressively worse as obstacle density in the environment
increases and sensor field of view decreases.

Since our work aims to deal with the worst possible case, which is very obstacle-
dense environments and a narrow field-of-view sensor, we cannot adapt the opti-
mistic strategy. In fact, we always plan to stop in known free space, to guarantee
safety in partially-unexplored environments.

However, it is a challenge to encode unknown space information in the ESDF,
as the ESDF integration requires TSDF distances to build on, and those are ei-
ther positive or negative. There is the additional problem that the MAV has no
knowledge of the state of its current position at start-up or take-off, as it has never
observed the space it occupies at the start. Furthermore, if the sensor has a very
narrow field of view, the space it perceives in front of the sensor may not be wide
enough to fit the entire robot body, essentially paralyzing the robot to never move.
Finally, it is not clear how to correctly treat voxels bordering unknown space in
ESDF computation.

We propose a simple strategy to resolve these issues, originally proposed in our
previous work [85]. The idea is to have two overlapping “spheres” centered around
the current robot pose that are applied in the ESDF, shown in Fig. 9.6. The inner
sphere is small and only slightly larger than the robot radius and is called the
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Figure 9.6: Diagram showing the two radiuses around the current robot pose:
a small clear sphere, which should be only slightly larger than the robot, and an
occupied sphere, which should be roughly the size of the planning radius.
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Figure 9.7: Steps in generating a sparse topological graph, also referred to as a
skeleton graph.

“clear sphere”, which sets unknown space within it to free in the ESDF. The outer
sphere affects all points not within the clear sphere and sets all unknown voxels
to occupied. Any voxels that receive distances from this operation are marked
as hallucinated in the map, so that as soon as real distance measurements are
available from the TSDF, their values are overwritten.

5 Sparse Topology

In this section, we extend our work on generating sparse topological skeletons
from [86]. We describe a complete method to extract a sparse graph of the
traversable free space in an ESDF from only ESDF map data. This sparse graph
is then used for very fast global planning in later sections of this work.

Our main contributions over our previous work in this section include:
• Switching to a simpler definition of the Generalized Voronoi Diagram (GVD),
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5 Sparse Topology

(a) Mesh (b) TSDF (c) ESDF
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Figure 9.8: Different stages of sparse topology skeleton computation, shown on
the machine hall RealSense dataset. Colors represent distances from obstacles.
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using 26-connectivity.

• Extending the method to work for both full and quasi-Euclidean distance.

• Speeding up sparse graph construction through use of flood-fill operations on
the edges.

• Proposing a new sparse graph simplification and sub-graph re-connection
methods, which produce more usable graphs significantly faster.

Fig. 9.7 shows the stages in the process, illustrated at key points with Fig. 9.8.
First, the generalized voronoi diagram (GVD) is constructed. This is done by

iterating all voxels in the ESDF to find “ridges” or “basis points”. A point is consid-
ered a basis point if its neighbors have parent vectors that are at least some angle
apart. The angle differs depending on whether quasi-Euclidean or full Euclidean
distance is employed, as quasi-Euclidean has a lower resolution in parent directions.
For full Euclidean distance, the separation angle is 45◦, and for quasi-Euclidean it
is 90◦.

We use a different definition of what belongs on the GVD from our previous
work, making the definition simpler and more physically meaningful. Before we
used 6-connectivity when evaluating belonging on the GVD, but now we use full
26-connectivity for all parts of the process. A point is considered a GVD face if it
has 9 or more neighbors that are basis points, an edge if it has 12 or more, and
a vertex at 16 or more. For the purposes of the remaining method, we do not
consider faces, as the goal is to build as sparse of a diagram as possible.

Finally, to create a sparse diagram (which is simply a voxel layer containing
number of basis point neighbors and whether the point is an edge or vertex or
not), we apply a series of thinning operations described in more detail in [86].
Fig. 9.8d and e show the difference before and after thinning: after the operation
is applied, all that is left is a one voxel-thick skeleton diagram.

To be more useful for planning, we want to further sparsify this diagram into a
graph, removing the notion of discrete voxel sizes. We propose a different method of
generating the sparse graph from the skeleton diagram here, which does not follow
the underlying diagram exactly (as our previous work did) but greatly simplifies
it. The downside to this is that edges no longer follow the maximum-clearance
edges, but may now pass through intraversable space. However, they will always
be very near traversable space, therefore as long as a flexible smoothing method
is employed afterwards, a feasible path will be found.

We take all vertices in the skeleton diagram, assign them unique vertex IDs, and
perform a flood-fill in all directions that contain edges, labelling the edges with
the two nearest vertex IDs. This is a speed improvement and simplification over
our previous “edge-following” algorithm, and does not suffer from cases where edge
connections are missed.

To simplify this graph, we attempt to remove all vertices that are not adding
information to the graph – essentially, vertices that are on straight lines or nearly-
straight lines between other vertices. The filter consists of removing vertices that
have exactly two edges, and whose removal will not displace the edges more than
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2 voxels.
As a final step, we attempt to find any way to reconnect disconnected subgraphs.

We label each self-contained subgraph in the sparse graph with another flood-fill
operation, and assign subgraph IDs. We then iteratively search for connections
from all subgraphs to all other subgraphs: if a connection is found, one of the
subgraphs is relabelled. To see if two sub-graphs can be connected, we first search
along the skeleton diagram using A*: if a connection exists, we insert a new edge
between the two closest vertices. If no connection exists in the diagram (which
very occasionally happens due to discretization error), we search in the traversable
space of the ESDF, again using A*. If a path exists there, then we attempt to
verify that ESDF path is valid and close to straight-line.

Both of these methods are much faster and more reliable at producing usable
sparse planning graphs than our previous approach.

6 Global Planning

In this section we will discuss different global planning strategies and their advan-
tages and disadvantages. It is assumed that a complete global map is available
for these methods. We plan only in position space, assuming the MAV is a sphere
for collision-checking purposes (as this makes it rotationally-invariant), and the
output of all the global planners is a list of position waypoints from start to goal.
All methods described here are available open-source11.

6.1 Sampling-based Methods
The first class of methods we will consider are sampling-based methods. They are
very well suited for large 3D problems, as they do not suffer from the same scaling
problem as search-based methods. One of the most commonly-used classes of
methods is Rapidly-exploring Random Trees (RRT) [54], where random points are
sampled in the planning space (in our case, just 3D position space) and iteratively
connected to a tree. Once the goal point is sampled, there exists a path from the
start point (the root of the tree) to the goal.

One key advantage of this class of methods is that all that is required is a way
to determine if a randomly-sampled state is valid or not, and a way to determine
whether connections between states are valid. We propose two different methods
to do this: one in the ESDF, which is pessimistic (assuming unknown space is
occupied) and on the TSDF, which is optimisic (assuming unknown space is free).
As long as they are coupled with a conservative/pessimistic local planner, either
method can be used.

The look-up in the ESDF requires only a single point per pose (as the ESDF
already stores the distance to the nearest obstacle, and therefore as long as that
distance is larger than the robot radius, the point is feasible), while the TSDF
look-up requires looking up an entire sphere and every voxel within. Additionally,

11github.com/ethz-asl/mav_voxblox_planning
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for determining if motions between two states are valid, we use a ray-cast operation
to not miss any potentially occupied voxels.

RRT-Connect

RRT-Connect is a very fast variant of the original RRT algorithm, which does a bi-
directional search: growing a tree from both the start and the goal points [49]. One
the downside, it does not optimize the paths (the algorithm terminates once a path
is found), so they are often much longer than necessary in complex environments.
For the purposes of our benchmarks, we treat this as the “first solution” time and
solution length for RRT-based algorithms.

RRT*

RRT* combines the best of both A* (which is an optional planning algorithm) and
random sampling to create a probabilistically-optimal planning solution [44] . This
method samples new points and rewires the graph for shorter solutions, up until a
time-limit is reached. There are other variants, such as Informed RRT* [30], which
iteratively shrink the sampling space after an initial solution is found, similar to
how the admissible heuristic is used in A*.

In general, this is the class of methods we prefer to use, as they give short,
nearly-optimal paths, and it is possible to decide how to trade-off computation
time versus optimality depending on application.

PRM and PRM*

For planning in a changing map, RRT-based methods are a very powerful tool,
as they do not store any information from iteration to iteration. However, for
global planning in a static map, this discards and replicates a large amount of
sampling effort. Therefore, Probabilistic Roadmaps (PRMs) are suitable for many
applications where the map remains fixed.

These approaches are similar to the topological graphs described below, in that
they usually consist of two stages: building the roadmap, and then searching
the roadmap for a solution. However, they suffer the same drawbacks as all
probabilistically-optimal methods: it is not clear how much sampling is “enough”
sampling, so it can only be decided by heuristics, and small openings or narrow
corridors pose huge problems for PRM-based methods (as the chance of samples
landing within them are small).

6.2 Topological Graphs
Our proposed method is a search through the sparse topological graph generated
in Section 5. Unlike PRM-based methods, ours is deterministic and has a fixed
computation time. Additionally, since the graph is based on the structure of the
ESDF, which already encodes the geometry of the scene, it does not suffer from
narrow corridor openings. The downside to this fixed execution and search time is
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that while the graph will contain all topologically-distinct homotopies of the space,
it is not guaranteed that the path length in the graph is the same as the shortest
path length through the space. We perform graph shortening (described below) to
attempt to overcome this issue, but it is possible that an incorrect homotope will
be selected (though this can also be a problem in PRMs, depending on how the
point distributions are sampled).

The method works as a two-stage search, starting from the sparse graph from
Section 5. We first find the nearest sparse graph vertex to the start and goal by
using a pre-computed k-D tree of vertices. Then we find a path through the graph
using A*. Due to the small size of the graph, this is a very fast operation, so it is
possible to solve the problem for multiple start and goal vertices from the k-D tree
to attempt to find a better solution. Finally, we plan from the start pose to the
start vertex using A* in the ESDF, and likewise for the goal. Since these distances
are always short, this is also not an expensive process.

Graph Shortening

While planning through the sparse topological graph is extremely fast, the way-
points it produces aim to maximize clearance, not necessarily minimize absolute
path length (path length on the graph is minimized) through all traversable space.
For instance, even a straight-line path from A to B would zig-zag along the maxi-
mum clearance lines in the graph.

To overcome this, we use iterative path shortening in the ESDF. We attempt to
short-cut between pairs of waypoints on the initial graph path in a binary search
manner, checking for traversability in the ESDF map, shown in Fig. 9.9.

We first try to shortcut directly from start to goal; if the straight-line path is not
traversable, we then split the waypoint list into two halves: front to middle and
middle to back. Each half is then iteratively checked, whether the intermediate
vertices can simply be removed; if not, it is further split into two halves.

We perform this full splitting procedure multiple times to ensure that no further
shortening is possible. This is similar to what the OMPL library does with the
RRT-planned paths, with the important distinction that our method is determin-
istic, while theirs randomly tries to connect pairs of waypoints. This means that
ours does not need heuristics to know when it is terminated: once no more changes
are made, the waypoint list is as shortened as possible. The randomized approach
requires options such as maximum steps and maximum empty steps (steps that
do not shorten) before terminating, which means that it may still be possible to
shorten the graph at termination.

7 Path Smoothing

Path smoothing deals with taking a set of waypoints and converting them to a
smooth, dynamically-feasible path. We present three methods we compare for
these purposes: velocity ramp, polynomial, and our approach named Loco. We
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Initial

First Split

Second Split

Figure 9.9: First three steps of binary-search graph shortening. The path is
iteratively split in half, until sub-paths are able to be shortened or no more splits
are possible. Green shows successful shortened paths, while red shows invalid
shorten attempts.

enforce dynamic constraints in the form of maximum velocity and acceleration
limits.

7.1 Velocity Ramp
The simplest method is velocity ramp. A straight-line path is drawn between
consecutive pairs of waypoints, and maximum acceleration is applied until the
velocity limit is reached, at which point the acceleration is zero. The same principle
is applied on deccelerating toward the next point.

The total time between two waypoints is described as:

t =
vmax

amax
+

∥∥xgoal − xstart
∥∥

vmax
(9.1)

where t is the time in seconds, vmax and amax are the velocity and acceleration
constraints, respectively, and xstart and xgoal are the 3 DoF positions of the start
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and goal.

7.2 Polynomial
High-degree polynomial splines are a common representation for MAV trajectories,
as they are easy to compute, can be smooth and continuous up to high derivatives,
and are shown to be dynamically feasible as long as velocity and acceleration
constraints are met [66], [95].

We implement a path smoothing method from Richter et al. [95], where a
polynomial spline is fit to the waypoints and then iteratively split at collisions.

First, we discuss the optimization problem. We formulate it to minimize a high
derivative such as jerk or snap, as shown to be desirable by Mellinger et al. [66].

We will consider a polynomial spline inK dimensions, with S segments, and each
segment of order N . Each segment has K dimensions, each of which is described
by an Nth order polynomial:

fk(t) = a0 + a1t+ a2t
2 + a3t

3 . . . aN t
N (9.2)

with the polynomial coefficients:

pk =
[
a0 a1 a2 . . . aN

]>
. (9.3)

Rather than optimizing over the polynomial coefficients directly, which has nu-
merical issues at high Ns, we instead optimize over the end-derivatives of segments
within the spline [95]. We distinguish between fixed derivatives dF (such as end-
constraints) and free derivatives dP (such as intermediate spline connections):

p = A−1M

[
dF
dP

]
. (9.4)

Where A is a mapping matrix from polynomial coefficients to end-derivatives, and
M is a reordering matrix to separate dF and dP .

We aim to minimize the derivative cost, Jd, which represents a certain derivative
(often jerk or snap) of the position [66], with R as the augmented cost matrix.

Jd = d>FRFFdF + d>FRFPdP +

d>PRPFdF + d>PRPPdP (9.5)

Finding the d?P that minimized Jd is possible to do in closed-form [95]:

d?P = −R−1
PPR

>
FPdF (9.6)

This method allows us to fit a smooth polynomial spline to a series of waypoints,
by using the positions of the waypoints as vertex constraints.
However, since waypoint trajectories are planned such that the straight-line path

(visibility graph) between them is collision-free, the smoothed path often runs into
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collision. To remedy this, any time a collision is detected, this method adds a
new waypoint on the visibility graph closest to its projection onto the straight-line
path, and the optimization is re-run.

While this is fast and easy to implement, this method suffers from occasionally
not being able to escape collisions, and in difficult cases, creates many extra way-
points. The optimization problem does not scale well numerically when there are
many waypoints, especially close together in time, as the segment times get very
short (and must be raised to high powers). Furthermore, adding these additional
waypoints often perturbs the trajectory in unexpected ways, causing the robot to
take large detours.

7.3 Local Continuous Optimization (Loco)
To overcome these issues, we propose our own method, Local Continuous Optimiza-
tion method, Loco~[81]. Rather than iteratively collision-checking and splitting the
trajectories, we introduce the collisions as soft costs in the optimization, following
the general structure that Ratliff et al. ~[93] proposed in their CHOMP method.
Introducing this soft cost leads to the following optimization problem, where w

terms are constant weights:

d∗P = argmin
dP

wdJd + wcJc (9.7)

Jd remains as in (9.5) above, and we introduce a new term, Jc represents a soft
collision cost:

Jc =

tm∑
t=0

c(f(t)) ‖v(t)‖∆t (9.8)

which approximates the line integral of costs along the path, where c(x) is the
collision cost from the map, f(t) is the position along the trajectory at time t, and
v(t) is the velocity at time t.
For the collision cost in the map, we use a smooth gradually decreasing function

proposed in CHOMP~[93], where ε is a tuning value for how far outside the robot
radius we care about collisions, x is a position in the map, and d(x) is the ESDF
distance at that point:

c(x) =


−d(x) + 1

2
ε if d(x) < 0

1
2ε

(d(x)− ε)2 if 0 ≤ d(x) ≤ ε
0 otherwise

(9.9)

In practice our robot radius is rarely 0, so we subtract the robot radius r from
d(x).

Now that we have a method of locally optimizing trajectories to be collision-free,
evaluated at length in our previous work~[81], the question is how to best make it
fit through a series of waypoints.
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We can use the starting method described above, where each waypoint simply
becomes a control point/vertex in the spline. This means that for every way-
point, we have another segment in the spline. This has various downsides, most
notably that for long, complex trajectories, the problem gets significantly slower
computationally, and can have numerical scaling issues.
We found in practice that the optimization works best with a small (3-5) num-

ber of segments, therefore we explored methods to fit a visibility graph to these
segments. The first solution was to generate an initial polynomial solution passing
through all waypoints, and then re-sample it down to S segments, by selecting
S−1 evenly-spaced times to sample the trajectory at. These then become the new
waypoints. We will refer to this strategy as “polynomial resampling” in the results
in Section 8.3.
The second method is to instead sample directly on the visibility graph. Rather

than sampling evenly-spaced ts on a polynomial trajectory, we instead fit a veloc-
ity ramp straight-line trajectory to a visibility graph, and sample the ts on this
trajectory. This method is referred to as “visibility resampling” in the results.
As shown in Section 8.3, both of these methods create better, higher-quality

paths faster than simple waypoint fitting.

8 Evaluations

We attempt to validate our complete system, especially focusing on global planning
and path smoothing on real data.
The local replanning is separately validated on both synthetic test-cases and in

the real world in our previous work [81], [85].

8.1 Evaluation Datasets
We focus our evaluations on real datasets, collected in typical scenarios for search
and rescue and industrial inspection. We performed three inspection flights, two at
a military search and rescue training ground at Wangen an der Aare, and one in the
ETH Zürich Machine Hall. Photos of the three areas, named “shed”, “rubble”, and
“Machine Hall” respectively, are shown in Fig. 9.10 and described in Table 9.1. All
datasets were collected with the MAV and sensor set-up described in Section 3.2,
using both stereo and RGB-D (Intel RealSense D415) sensors.
We make six global maps available: two per dataset, one using the stereo cameras

and one using the RGB-D sensor (RS). All the maps are available for download12.
The provided maps were generated with 10 cm voxels, 1 meter clear and 4 meter

occupied spheres (described in Section 4.2), 8 meter maximum ray distance for
TSDF construction, and 4 meter maximum ESDF computation distance.
We provide both a stereo and an RS map of all environments due to the narrow

field of view (FoV) of the RealSense camera, but superior depth measurements
(and color information). Fig. 9.12 shows the difference in traversability between

12github.com/ethz-asl/mav_voxblox_planning
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Dataset Name Location Flight Length Volume Contents

Shed Wangen a. A, BE, CH 217 sec 38 m x 35 m x 12 m Mixed indoor and outdoor dataset with narrow openings
Rubble Wangen a. A, BE, CH 159 sec 28 m x 27 m x 12 m Outdoor dataset, over earth-quake damaged buildings
Machine Hall ETH Zürich, ZH, CH 251 sec 24 m x 30 m x 8 m Indoor area, with large industrial machinery

Table 9.1: Dataset statistics and descriptions.

(a) Shed, outdoors (b) Shed, indoors

(c) Rubble (d) Machine Hall

Figure 9.10: Photos of the three scenarios from the benchmark dataset. (a) and
(b) outdoor and indoor parts of the shed scene. (c): rubble scene. (d): machine
hall scene.
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the stereo and the RGB-D version of the shed dataset, assuming an 0.5 meter robot
radius. For other datasets, such as machine hall, this is less important because the
structure is much closer and therefore the narrow FoV makes little difference.

8.2 Sparse Topology Generation
To show that our sparse topology graph (or skeleton) is a feasible global planning
strategy, we analyze the amount of time it takes to generate the sparse graph from
an ESDF for each dataset. The results are shown in Fig. 9.13.

There is a large difference in the generation time between stereo and RealSense
for the machine hall and rubble datasets, due to how much more space is traversable
in the stereo datasets. However, most datasets are generated in 2 seconds or less,
and the worst-case is 10 seconds. We consider this very feasible for a pre-processing
step for global planning, as the actual planning times are orders of magnitude faster
than other methods.

8.3 Loco
We analyze the effect of different waypoint fitting methods for Loco, as described
in Section 7.3. We compare three methods: waypoint fitting (where each pair of
waypoints has a segment between them), polynomial resampling (where an ini-
tial polynomial trajectory is fit with one segment through each waypoint, then
resampled to a fixed number of waypoints), and visbility graph resampling (where
intermediate waypoints are sampled directly off the visibility graph). The results
are shown in Fig. 9.14, evaluated on the stereo shed dataset.

The visibility graph resampling has the highest success rate, and we use that
variant as ‘Loco’ for the remaining evaluations.

8.4 Global Planning Benchmarks
To demonstrate the differences between different global planning methods, and how
choice of path smoother affects the final result, we run 100 trials on each provided
dataset. Each trial starts and ends at a random location, a minimum of 2 meters
apart. The robot radius is 0.5 meters for all planners.

We use multiple global planning methods, summarized below:

None Straight-line path between start and goal, no planning, meant to give an
estimate of how many of the test cases have trivial solutions.

RRT Conn. RRT-Connect, which grows a bi-directional tree from and toward the
goal. Very fast, run with an upper time bound of 1.0 sec (though terminates
when first solution is found).

RRT* Probabilistically-optimal random planner, run for 2.0 seconds.

Skeleton Our sparse topological planner, using path shortening on the output
path.
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(a) Shed (RS) (b) Shed (Stereo)

(c) Rubble (RS) (d) Rubble (Stereo)

(e) Machine Hall (RS) (f) Machine Hall (Stereo)

Figure 9.11: Colored meshes of the RealSense (RS) and stereo versions of the three
maps used for benchmarking. Our stereo system is based on grayscale cameras, so
no color data is available.
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(a) Shed (Stereo) (b) Shed (RS)

Figure 9.12: Traversability differences between stereo datasets and RealSense
datasets. Traversable space (given an 0.5 meter robot radius) is shown as colored
points. As can be seen, much more space is considered traversable with stereo
data.

Skeleton Generation Time

8.09

1.76

6.05

1.00

1.74

1.26

Shed Rubble Machine Hall

Dataset

0

2

4

6

8

10

S
k
e

le
to

n
 G

e
n

e
ra

ti
o

n
 T

im
e

 [
s
e
c
] Stereo

RGB-D

Figure 9.13: Sparse topological (skeleton) graph generation timings for the
test datasets. The stereo datasets generally take longer because there is more
traversable space.
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Loco Success Rate
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Figure 9.14: A comparison of different waypoint fitting methods for Loco, and
their success rate on the shed stereo dataset given different global planning meth-
ods. In general, visibility resampling has the highest success rate.

PRM Probabilistic roadmap, aimed to compare versus our skeleton-based method.
The pre-planning stage is run for 2.0 seconds (to mirror the average dataset
processing time of the sparse topology), and each planning query is given an
additional 0.1 seconds.

Likewise, we test a variety of path smoothing methods:

No Smoothing Not an actual path smoothing method, just an indicator showing
whether the global planner succeeded or not.

Velocity Ramp Velocity ramp method, always applying maximum or no accelera-
tion. Follows straight-line paths between waypoints.

Polynomial The polynomial splitting approach of [95], described in sections above.

Loco Our local continuous trajectory optimizaton algorithm, run with visibility
waypoint re-sampling, as determined from the previous sections to be the
best.

Fig. 9.15 shows a comparison of all described methods on the Machine Hall
RealSense dataset. There are a number of take-aways from these results. When
not using a global planner (i.e., attempting to draw a straight-line path between
start and goal), only 13% of the test cases have trivial solutions, but Loco is able
to solve 56% of problems with no global plan. In general, the success rate of Loco
is also slightly higher, as it is able to better utilize the information in the map.

All the global planners are able to solve all of the planning problems. One
key point to note is that the velocity ramp method does not work very well with
the topological skeleton planner: this is because our graph simplification method
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Global and Smoothing 
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Figure 9.15: Success rate of various global planner and path smoothing methods
on the Machine Hall RealSense dataset, showing our method (Loco) is able to give
smooth dynamically-feasible paths for more tests cases than competing methods.

contains some edges that do not lie perfectly on the straight-line. However, the
Loco planner has a comparable success rate with the skeleton planner as other
planners, again because it can follow gradient information in the map and slightly
perturb the waypoints to produce a collision-free path.

The timings for a single typical trajectory on the Shed stereo dataset are shown
in Fig. 9.16 (note the log scale). The topological skeleton planning method is 10x
faster than even RRT Connect (and produces much shorter path lengths). Both the
polynomial and loco smoothing methods are acceptable for fast global planning,
though the polynomial method is approximately 2x faster.

9 Conclusions

This paper presents a complete system for performing global planning, path smooth-
ing, and local replanning. We extend on our previous work by improving a global
planning sparse topology generation algorithm, suggest methods in which our lo-
cal re-planning algorithm can also function for path smoothing, and benchmark a
variety of global and path smoothing methods. Most importantly, we describe not
only our mapping and planning approaches, but considerations that must be taken
in other parts of the system for this approach to work, such as state estimation
and controls, and make all of our code available online and open-source.
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Figure 9.16: Timings for various global and local planning methods. Note the log
scale. As can be seen, skeleton planning is at least one order of magnitude faster
than other global planning methods, and while loco timing is slightly slower than
polynomial, it is still within bounds for fast global planning applications.

138



Bibliography

[1] A. J. Barry. High-Speed Autonomous Obstacle Avoidance with Pushbroom
Stereo. PhD thesis, Massachusetts Institute of Technology, Feb 2016.

[2] A. J. Barry, A. Majumdar, and R. Tedrake. Safety verification of reactive
controllers for uav flight in cluttered environments using barrier certificates.
In IEEE International Conference on Robotics and Automation (ICRA),
pages 484–490. IEEE, 2012.

[3] A. Bircher, M. Kamel, K. Alexis, H. Oleynikova, and R. Siegwart. Receding
horizon “next-best-view" planner for 3d exploration. In IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2016.

[4] A. Bircher, M. Kamel, K. Alexis, H. Oleynikova, and R. Siegwart. Receding
horizon path planning for 3d exploration and surface inspection. Autonomous
Robots, pages 1–16, 2016.

[5] F. Blöchliger, M. Fehr, M. Dymczyk, T. Schneider, and R. Siegwart.
Topomap: Topological mapping and navigation based on visual slam maps.
In IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2018.

[6] M. Bloesch, S. Omari, M. Hutter, and R. Siegwart. Robust visual inertial
odometry using a direct ekf-based approach. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 298–304. IEEE,
2015.

[7] M. Bloesch, M. Burri, S. Omari, M. Hutter, and R. Siegwart. Iterated ex-
tended kalman filter based visual-inertial odometry using direct photometric
feedback. The International Journal of Robotics Research (IJRR), 36(10):
1053–1072, 2017.

[8] M. Burri, H. Oleynikova, M. W. Achtelik, and R. Siegwart. Real-time visual-
inertial mapping, re-localization and planning onboard mavs in unknown
environments. In IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), Sept 2015.

[9] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari, M. W.
Achtelik, and R. Siegwart. The euroc micro aerial vehicle datasets. The
International Journal of Robotics Research (IJRR), 2016.

139



Bibliography

[10] M. Burri, J. Nikolic, H. Oleynikova, M. W. Achtelik, and R. Siegwart. Max-
imum likelihood parameter identification for mavs. In IEEE International
Conference on Robotics and Automation (ICRA), pages 4297–4303. IEEE,
2016.

[11] E. Bylow, J. Sturm, C. Kerl, F. Kahl, and D. Cremers. Real-time camera
tracking and 3d reconstruction using signed distance functions. In Robotics:
Science and Systems (RSS), volume 9. Robotics: Science and Systems, 2013.

[12] T.-T. Cao, K. Tang, A. Mohamed, and T.-S. Tan. Parallel banding algorithm
to compute exact distance transform with the gpu. In ACM SIGGRAPH
symposium on Interactive 3D Graphics and Games. ACM, 2010.

[13] B. Charrow, G. Kahn, S. Patil, S. Liu, K. Goldberg, P. Abbeel, N. Michael,
and V. Kumar. Information-theoretic planning with trajectory optimization
for dense 3d mapping. In Robotics: Science and Systems (RSS), 2015.

[14] J. Chen, T. Liu, and S. Shen. Online generation of collision-free trajectories
for quadrotor flight in unknown cluttered environments. In International
Conference on Robotics and Automation (ICRA). IEEE, 2016.

[15] H. Cover, S. Choudhury, S. Scherer, and S. Singh. Sparse tangential network
(spartan): Motion planning for micro aerial vehicles. In IEEE International
Conference on Robotics and Automation (ICRA), pages 2820–2825. IEEE,
2013.

[16] B. Curless and M. Levoy. A volumetric method for building complex models
from range images. In Proceedings of the 23rd annual conference on Com-
puter graphics and interactive techniques, pages 303–312. ACM, 1996.

[17] B. Davis, I. Karamouzas, and S. J. Guy. C-opt: Coverage-aware trajectory
optimization under uncertainty. IEEE Robotics and Automation Letters,
2016.

[18] R. Deits and R. Tedrake. Computing large convex regions of obstacle-free
space through semidefinite programming. In Algorithmic Foundations of
Robotics XI, pages 109–124. Springer, 2015.

[19] J. Dong, M. Mukadam, F. Dellaert, and B. Boots. Motion planning as prob-
abilistic inference using gaussian processes and factor graphs. In Robotics:
Science and Systems (RSS), June 2016.

[20] A. Elfes. Using occupancy grids for mobile robot perception and navigation.
Computer, 22(6):46–57, 1989.

[21] Z. Fang, C. Luan, and Z. Sun. A 2d voronoi-based random tree for path
planning in complicated 3d environments. In International Conference on
Intelligent Autonomous Systems, pages 433–445. Springer, 2016.

140



Bibliography

[22] P. Florence, J. Carter, and R. Tedrake. Integrated perception and control
at high speed: Evaluating collision avoidance maneuvers without maps. In
Workshop on the Algorithmic Foundations of Robotics, 2016.

[23] P. R. Florence, J. Carter, J. Ware, and R. Tedrake. Nanomap: Fast,
uncertainty-aware proximity queries with lazy search over local 3d data. In
IEEE International Conference on Robotics and Automation (ICRA), 2018.

[24] M. Foskey, M. Garber, M. C. Lin, and D. Manocha. A voronoi-based hy-
brid motion planner. In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), volume 1, pages 55–60. IEEE, 2001.

[25] M. Foskey, M. C. Lin, and D. Manocha. Efficient computation of a simplified
medial axis. Journal of Computing and Information Science in Engineering,
3(4):274–284, 2003.

[26] D. Fox, W. Burgard, S. Thrun, and A. B. Cremers. A hybrid collision avoid-
ance method for mobile robots. In Robotics and Automation, 1998. Proceed-
ings. 1998 IEEE International Conference on, volume 2, pages 1238–1243.
IEEE, 1998.

[27] S. F. Frisken, R. N. Perry, A. P. Rockwood, and T. R. Jones. Adaptively sam-
pled distance fields: a general representation of shape for computer graphics.
In Proceedings of the 27th annual conference on Computer graphics and in-
teractive techniques, pages 249–254. ACM Press/Addison-Wesley Publishing
Co., 2000.

[28] F. Furrer, M. Burri, M. Achtelik, and R. Siegwart. Rotors – a modular
gazebo mav simulator framework. In Robot Operating System (ROS), pages
595–625. Springer, 2016.

[29] F. Furrer, T. Novkovic, M. Fehr, A. Gawel, M. Grinvald, T. Sattler, R. Sieg-
wart, and J. Nieto. Incremental object database: Building 3d models from
multiple partial observations. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2018.

[30] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot. Informed rrt*: Optimal
sampling-based path planning focused via direct sampling of an admissible
ellipsoidal heuristic. In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2014.

[31] S. F. Gibson. Using distance maps for accurate surface representation in
sampled volumes. In IEEE Symposium on Volume Visualization, pages 23–
30. IEEE, 1998.

141



Bibliography

[32] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic de-
termination of minimum cost paths. IEEE transactions on Systems Science
and Cybernetics, 4(2):100–107, 1968.

[33] L. Heng, L. Meier, P. Tanskanen, F. Fraundorfer, and M. Pollefeys. Au-
tonomous obstacle avoidance and maneuvering on a vision-guided mav using
on-board processing. In IEEE International Conference on Robotics and
Automation (ICRA), pages 2472–2477. IEEE, 2011.

[34] L. Heng, D. Honegger, G. H. Lee, L. Meier, P. Tanskanen, F. Fraundorfer,
and M. Pollefeys. Autonomous visual mapping and exploration with a micro
aerial vehicle. Journal of Field Robotics, 31(4):654–675, 2014.

[35] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox. Rgb-d mapping:
Using kinect-style depth cameras for dense 3d modeling of indoor environ-
ments. The International Journal of Robotics Research (IJRR), 31(5):647–
663, 2012.

[36] C. Hernández, G. Vogiatzis, and R. Cipolla. Probabilistic visibility for multi-
view stereo. In IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 1–8. IEEE, 2007.

[37] K. Hoff, T. Culver, J. Keyser, M. C. Lin, and D. Manocha. Interactive mo-
tion planning using hardware-accelerated computation of generalized voronoi
diagrams. In IEEE International Conference on Robotics and Automation
(ICRA), volume 3, pages 2931–2937. IEEE, 2000.

[38] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard.
Octomap: An efficient probabilistic 3d mapping framework based on octrees.
Autonomous Robots, 2013.

[39] O. Kahler, V. A. Prisacariu, C. Y. Ren, X. Sun, P. Torr, and D. Murray. Very
high frame rate volumetric integration of depth images on mobile devices.
IEEE Transactions on Visualization and Computer Graphics, 2015.

[40] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal. Stomp:
Stochastic trajectory optimization for motion planning. In IEEE Interna-
tional Conference on Robotics and Automation (ICRA). IEEE, 2011.

[41] N. Kalra, D. Ferguson, and A. Stentz. Incremental reconstruction of gener-
alized voronoi diagrams on grids. Robotics and Autonomous Systems, 57(2):
123–128, 2009.

[42] M. Kamel, J. Alonso-Mora, R. Siegwart, and J. Nieto. Nonlinear model
predictive control for multi-micro aerial vehicle robust collision avoidance.
arXiv preprint arXiv:1703.01164, 2017.

142



Bibliography

[43] M. Kamel, M. Burri, and R. Siegwart. Linear vs nonlinear mpc for trajectory
tracking applied to rotary wing micro aerial vehicles. IFAC-PapersOnLine,
50(1):3463–3469, 2017.

[44] S. Karaman and E. Frazzoli. Sampling-based algorithms for optimal motion
planning. The International Journal of Robotics Research (IJRR), 30(7):
846–894, 2011.

[45] S. Karaman and E. Frazzoli. High-speed flight in an ergodic forest. In IEEE
International Conference on Robotics and Automation (ICRA), pages 2899–
2906. IEEE, 2012.

[46] M. Klingensmith, I. Dryanovski, S. Srinivasa, and J. Xiao. Chisel: Real time
large scale 3d reconstruction onboard a mobile device. In RSS: Robotics
Science and Systems, July 2015.

[47] S. Koenig and M. Likhachev. Fast replanning for navigation in unknown
terrain. IEEE Transactions on Robotics (T-RO), 21(3):354–363, 2005.

[48] P. Krüsi, B. Bücheler, F. Pomerleau, U. Schwesinger, R. Siegwart, and P. Fur-
gale. Lighting-invariant adaptive route following using iterative closest point
matching. Journal of Field Robotics, 32(4):534–564, 2015.

[49] J. J. Kuffner and S. M. LaValle. Rrt-connect: An efficient approach to
single-query path planning. In IEEE International Conference on Robotics
and Automation (ICRA), volume 2, pages 995–1001. IEEE, 2000.

[50] B. Landry, R. Deits, P. R. Florence, and R. Tedrake. Aggressive quadrotor
flight through cluttered environments using mixed integer programming. In
IEEE International Conference on Robotics and Automation (ICRA), pages
1469–1475. IEEE, 2016.

[51] B. Lau, C. Sprunk, andW. Burgard. Improved updating of euclidean distance
maps and voronoi diagrams. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2010.

[52] B. Lau, C. Sprunk, and W. Burgard. Efficient grid-based spatial represen-
tations for robot navigation in dynamic environments. Robotics and Au-
tonomous Systems, 61(10):1116–1130, 2013.

[53] S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning. The
International Journal of Robotics Research (IJRR), 20(5):378–400, 2001.

[54] S. M. Lavalle, J. J. Kuffner, and Jr. Rapidly-exploring random trees: Progress
and prospects. In Algorithmic and Computational Robotics: New Directions,
pages 293–308, 2000.

143



Bibliography

[55] T.-C. Lee, R. L. Kashyap, and C.-N. Chu. Building skeleton models via 3-
d medial surface axis thinning algorithms. CVGIP: Graphical Models and
Image Processing, 56(6):462–478, 1994.

[56] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and P. Furgale. Keyframe-
based visual–inertial odometry using nonlinear optimization. The Interna-
tional Journal of Robotics Research (IJRR), 2015.

[57] Y. Lin, F. Gao, T. Qin, W. Gao, T. Liu, W. Wu, Z. Yang, and S. Shen.
Autonomous aerial navigation using monocular visual-inertial fusion. Journal
of Field Robotics (JFR), 2017.

[58] M. Liu, F. Colas, L. Oth, and R. Siegwart. Incremental topological segmen-
tation for semi-structured environments using discretized gvg. Autonomous
Robots, 38(2):143–160, 2015.

[59] S. Liu, M. Watterson, K. Mohta, K. Sun, S. Bhattacharya, C. J. Taylor,
and V. Kumar. Planning dynamically feasible trajectories for quadrotors
using safe flight corridors in 3-d complex environments. IEEE Robotics and
Automation Letters, 2017.

[60] B. T. Lopez and J. P. How. Aggressive 3-d collision avoidance for high-speed
navigation. In IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2017.

[61] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3d
surface construction algorithm. In SIGGRAPH, volume 21, pages 163–169.
ACM, 1987.

[62] S. Lynen, M. W. Achtelik, S. Weiss, M. Chli, and R. Siegwart. A ro-
bust and modular multi-sensor fusion approach applied to mav navigation.
In IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2013.

[63] C. M. Ma and M. Sonka. A fully parallel 3d thinning algorithm and its ap-
plications. Computer vision and image understanding, 64(3):420–433, 1996.

[64] B. MacAllister, J. Butzke, A. Kushleyev, H. Pandey, and M. Likhachev. Path
planning for non-circular micro aerial vehicles in constrained environments.
In IEEE International Conference on Robotics and Automation (ICRA),
pages 3933–3940. IEEE, 2013.

[65] J. Machado Santos, D. Portugal, and R. P. Rocha. An evaluation of 2d slam
techniques available in robot operating system. In Safety, Security, and
Rescue Robotics (SSRR), 2013 IEEE International Symposium on, pages
1–6. IEEE, 2013.

144



Bibliography

[66] D. Mellinger and V. Kumar. Minimum snap trajectory generation and control
for quadrotors. In IEEE International Conference on Robotics and Automa-
tion (ICRA), pages 2520–2525. IEEE, 2011.

[67] A. Millane, Z. Taylor, H. Oleynikova, J. Nieto, R. Siegwart, and C. Cadena.
Tsdf manifolds: A scalable and consistent dense mapping approach. arXiv
preprint arXiv:1710.07242, 2017.

[68] A. Millane, Z. Taylor, H. Oleynikova, J. Nieto, R. Siegwart, and C. Ca-
dena. C-blox: A scalable and consistent tsdf-based dense mapping approach.
In IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2018.

[69] K. Mohta, M. Watterson, Y. Mulgaonkar, S. Liu, C. Qu, A. Makineni,
K. Saulnier, K. Sun, A. Zhu, J. Delmerico, et al. Fast, autonomous flight in
gps-denied and cluttered environments. Journal of Field Robotics (JFR), 35
(1):101–120, 2018.

[70] U. Montanari. A method for obtaining skeletons using a quasi-euclidean
distance. Journal of the ACM (JACM), 1968.

[71] B. Morrell, R. Thakker, G. Merewether, R. Reid, M. Rigter, T. Tzanetos,
and G. Chamitoff. Comparison of trajectory optimization algorithms for
high-speed quadrotor flight near obstacles. IEEE Robotics and Automation
Letters, 3(4):4399–4406, 2018.

[72] M. W. Mueller, M. Hehn, and R. D’Andrea. A computationally efficient
motion primitive for quadrocopter trajectory generation. IEEE Transactions
on Robotics (T-RO), 2015.

[73] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos. Orb-slam: a versatile
and accurate monocular slam system. IEEE Transactions on Robotics, 31
(5):1147–1163, 2015.

[74] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J. Davison,
P. Kohi, J. Shotton, S. Hodges, and A. Fitzgibbon. Kinectfusion: Real-time
dense surface mapping and tracking. In Mixed and augmented reality (IS-
MAR), 2011 10th IEEE international symposium on, pages 127–136. IEEE,
2011.

[75] C. V. Nguyen, S. Izadi, and D. Lovell. Modeling kinect sensor noise for
improved 3d reconstruction and tracking. In International Conference on
3D Imaging, Modeling, Processing, Visualization and Transmission (3DIM-
PVT). IEEE, 2012.

145



Bibliography

[76] M. Nießner, M. Zollhöfer, S. Izadi, and M. Stamminger. Real-time 3d re-
construction at scale using voxel hashing. ACM Transactions on Graphics
(TOG), 32(6):169, 2013.

[77] M. Nieuwenhuisen and S. Behnke. Layered mission and path planning for mav
navigation with partial environment knowledge. In Intelligent Autonomous
Systems, pages 307–319. Springer, 2016.

[78] J. Nikolic, J. Rehder, M. Burri, P. Gohl, S. Leutenegger, P. T. Furgale, and
R. Siegwart. A synchronized visual-inertial sensor system with fpga pre-
processing for accurate real-time slam. In IEEE International Conference
on Robotics and Automation (ICRA), pages 431–437. IEEE, 2014.

[79] H. Oleynikova, M. Burri, S. Lynen, and R. Siegwart. Real-time visual-inertial
localization for aerial and ground robots. In IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS). IEEE, Sept 2015.

[80] H. Oleynikova, D. Honegger, and M. Pollefeys. Reactive avoidance using
embedded stereo vision for mav flight. In IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2015.

[81] H. Oleynikova, M. Burri, Z. Taylor, J. Nieto, R. Siegwart, and E. Gal-
ceran. Continuous-time trajectory optimization for online uav replanning.
In IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2016.

[82] H. Oleynikova, A. Millane, Z. Taylor, E. Galceran, J. Nieto, and R. Sieg-
wart. Signed distance fields: A natural representation for both mapping and
planning. In RSS Workshop on Geometry and Beyond, 2016.

[83] H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart, and J. Nieto. Voxblox:
Incremental 3d euclidean signed distance fields for on-board mav planning.
In IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2017.

[84] H. Oleynikova, Z. Taylor, A. Millane, R. Siegwart, and J. Nieto. A complete
system for vision-based micro-aerial vehicle mapping, planning, and flight in
cluttered environments. arXiv preprint arXiv:1812.03892, 2018.

[85] H. Oleynikova, Z. Taylor, R. Siegwart, and J. Nieto. Safe local exploration
for replanning in cluttered unknown environments for micro-aerial vehicles.
IEEE Robotics and Automation Letters, 2018.

[86] H. Oleynikova, Z. Taylor, R. Siegwart, and J. Nieto. Sparse 3d topolog-
ical graphs for micro-aerial vehicle planning. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2018.

146



Bibliography

[87] J. Pan, S. Chitta, and D. Manocha. Fcl: A general purpose library for colli-
sion and proximity queries. In IEEE International Conference on Robotics
and Automation (ICRA), pages 3859–3866. IEEE, 2012.

[88] C. Papachristos, S. Khattak, and K. Alexis. Uncertainty-aware receding
horizon exploration and mapping using aerial robots. In IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2017.

[89] C. Papachristos, M. Kamel, M. Popović, S. Khattak, A. Bircher,
H. Oleynikova, T. Dang, F. Mascarich, K. Alexis, and R. Siegwart. Au-
tonomous exploration and inspection path planning for aerial robots using
the robot operating system. In Robot Operating System (ROS), pages 67–111.
Springer, 2019.

[90] A. A. Paranjape, K. C. Meier, X. Shi, S.-J. Chung, and S. Hutchinson.
Motion primitives and 3d path planning for fast flight through a forest. The
International Journal of Robotics Research (IJRR), 2015.

[91] M. Pivtoraiko, D. Mellinger, and V. Kumar. Incremental micro-uav mo-
tion replanning for exploring unknown environments. In IEEE International
Conference on Robotics and Automation (ICRA), pages 2452–2458. IEEE,
2013.

[92] T. Qin, P. Li, and S. Shen. Vins-mono: A robust and versatile monocular
visual-inertial state estimator. IEEE Transactions on Robotics, 34(4):1004–
1020, 2018.

[93] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa. Chomp: Gradient
optimization techniques for efficient motion planning. In IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2009.

[94] A. Richards and J. P. How. Aircraft trajectory planning with collision avoid-
ance using mixed integer linear programming. In Proceedings of the American
Control Conference (ACC), volume 3, pages 1936–1941. IEEE, 2002.

[95] C. Richter, A. Bry, and N. Roy. Polynomial trajectory planning for aggres-
sive quadrotor flight in dense indoor environments. In Proceedings of the
International Symposium on Robotics Research (ISRR), 2013.

[96] C. Richter, J. Ware, and N. Roy. High-speed autonomous navigation of un-
known environments using learned probabilities of collision. In IEEE Inter-
national Conference on Robotics and Automation (ICRA), pages 6114–6121.
IEEE, 2014.

[97] F. Ruetz, E. Hernández, M. Pfeiffer, H. Oleynikova, M. Cox, T. Lowe, and
P. Borges. Ovpc mesh: 3d free-space representation for local ground vehicle
navigation. arXiv preprint arXiv:1811.10266, 2018.

147



Bibliography

[98] T. Schneider, M. Dymczyk, M. Fehr, K. Egger, S. Lynen, I. Gilitschenski,
and R. Siegwart. maplab: An open framework for research in visual-inertial
mapping and localization. IEEE Robotics and Automation Letters, 3(3):
1418–1425, 2018.

[99] J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow, J. Pan, S. Patil,
K. Goldberg, and P. Abbeel. Motion planning with sequential convex op-
timization and convex collision checking. The International Journal of
Robotics Research (IJRR), 2014.

[100] U. Schwesinger, M. Rufli, P. Furgale, and R. Siegwart. A sampling-based
partial motion planning framework for system-compliant navigation along a
reference path. In Intelligent Vehicles Symposium (IV), 2013 IEEE, pages
391–396. IEEE, 2013.

[101] D. F. Shanno. On broyden-fletcher-goldfarb-shanno method. Journal of
Optimization Theory and Applications, 46(1):87–94, 1985.

[102] F. She, R. Chen, W. Gao, P. Hodgson, L. Kong, and H. Hong. Improved
3d thinning algorithms for skeleton extraction. In Digital Image Computing:
Techniques and Applications (DICTA), pages 14–18. IEEE, 2009.

[103] S. Shen, N. Michael, and V. Kumar. Autonomous indoor 3d exploration with
a micro-aerial vehicle. In IEEE International Conference on Robotics and
Automation (ICRA), pages 9–15. IEEE, 2012.

[104] F. Steinbrucker, J. Sturm, and D. Cremers. Volumetric 3d mapping in real-
time on a cpu. In IEEE International Conference on Robotics and Automa-
tion (ICRA), pages 2021–2028. IEEE, 2014.

[105] A. Tagliasacchi, T. Delame, M. Spagnuolo, N. Amenta, and A. Telea. 3d
skeletons: A state-of-the-art report. In Computer Graphics Forum. Wiley
Online Library, 2016.

[106] R. Tedrake, I. R. Manchester, M. Tobenkin, and J. W. Roberts. Lqr-trees:
Feedback motion planning via sums-of-squares verification. The Interna-
tional Journal of Robotics Research (IJRR), 2010.

[107] G. Teodoro, T. Pan, T. M. Kurc, J. Kong, L. A. Cooper, and J. H. Saltz.
Efficient irregular wavefront propagation algorithms on hybrid cpu–gpu ma-
chines. Parallel computing, 2013.

[108] S. Thrun. Learning metric-topological maps for indoor mobile robot naviga-
tion. Artificial Intelligence, 99(1):21–71, 1998.

148



Bibliography

[109] V. Usenko, L. von Stumberg, A. Pangercic, and D. Cremers. Real-time
trajectory replanning for mavs using uniform b-splines and 3d circular buffer.
In IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2017.

[110] R. Wagner, U. Frese, and B. Bauml. 3d modeling, distance and gradient
computation for motion planning: A direct gpgpu approach. In IEEE Inter-
national Conference on Robotics and Automation (ICRA). IEEE, 2013.

[111] R. Wagner, U. Frese, and B. Bäuml. Real-time dense multi-scale workspace
modeling on a humanoid robot. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2013.

[112] T. Whelan, M. Kaess, M. Fallon, H. Johannsson, J. Leonard, and J. Mc-
Donald. Kintinuous: Spatially extended kinectfusion. In RSS Workshop on
RGB-D: Advanced Reasoning with Depth Cameras, 2012.

[113] T. Whelan, S. Leutenegger, R. F. Salas-Moreno, B. Glocker, and A. J. Davi-
son. Elasticfusion: Dense slam without a pose graph. In Robotics: Science
and Systems (RSS), 2015.

[114] C. Witting, M. Fehr, R. Bähnemann, H. Oleynikova, and R. Siegwart.
History-aware autonomous exploration in confined environments using mavs.
In IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2018.

[115] Q.-Z. Ye. The signed euclidean distance transform and its applications. In
International Conference on Pattern Recognition (ICPR), pages 495–499.
IEEE, 1988.

[116] M. Zucker, N. Ratliff, A. D. Dragan, M. Pivtoraiko, M. Klingensmith, C. M.
Dellin, J. A. Bagnell, and S. S. Srinivasa. Chomp: Covariant hamiltonian
optimization for motion planning. The International Journal of Robotics
Research (IJRR), 2013.

149





Curriculum Vitae

Helen Oleynikova
born February 2nd, 1990
living in Zürich, Switzerland

2015–2018 ETH Zurich, Switzerland
Doctoral studies at the Autonomous Systems Lab; Supervised
by Prof. Roland Siegwart

2013–2015 ETH Zurich, Switzerland
Master of Science in Robotics, Systems, and Control

2011–2013 Google, Mountain View, California, USA
Software Engineer, Street View Team

2007–2011 Franklin W. Olin College of Engineering, Needham, Mas-
sachusetts, USA
Bachelor of Science in Engineering with a Concentration in
Robotics

2003–2007 Dublin High School, Dublin, California, USA
High School Diploma

151


	Abstract
	Zusammenfassung
	Acknowledgements
	Preface
	1 Introduction
	1.1 Motivation and Objectives
	1.2 Approach

	2 Contribution
	2.1 Paper I
	2.2 Paper II
	2.3 Paper III
	2.4 Paper IV
	2.5 Paper V
	2.6 Paper VI
	2.7 List of Publications
	2.8 List of Supervised Students

	3 Conclusion and Outlook
	3.1 Future Work

	A. Publications
	Paper I: Continuous-Time Trajectory Optimization for Online UAV Replanning
	1 Introduction
	2 Related Work
	3 Continuous-Time Trajectory Optimization Algorithm
	4 Replanning System
	5 Experimental Results
	6 Discussion
	7 Conclusions

	Paper II: Signed Distance Fields: A Natural Representation for Both Mapping and Planning
	1 Introduction
	2 Related Work
	3 SDF Advantages over Octomap
	4 Combining ESDF and TSDF: Results
	5 Conclusions

	Paper III: Voxblox: Incremental 3D Euclidean Signed Distance Fields for On-Board MAV Planning
	1 Introduction
	2 Related Work
	3 System
	4 TSDF Construction
	5 Constructing ESDF from TSDF
	6 Experimental Results
	7 MAV Planning Experiments
	8 Conclusions

	Paper IV: Safe Local Exploration for Replanning in Cluttered Unknown Environments for Micro-Aerial Vehicles
	1 Introduction
	2 Related Work
	3 Problem Description
	4 Local Trajectory Optimization
	5 Map Representation and Unknown Space
	6 Intermediate Goal Selection
	7 Simulation Experiments
	8 Real-World Experiments
	9 Conclusions

	Paper V: Sparse 3D Topological Graphs for Micro-Aerial Vehicle Planning
	1 Introduction
	2 Related Work
	3 Skeleton Diagram Construction
	4 Sparse Graph Generation
	5 Planning Algorithms
	6 Experiments
	7 Conclusions

	Paper VI: A Complete System for Vision-Based Micro-Aerial Vehicle Mapping, Planning, and Flight in Cluttered Environments
	1 Introduction
	2 Related Work
	3 System Overview
	4 Dense Mapping
	5 Sparse Topology
	6 Global Planning
	7 Path Smoothing
	8 Evaluations
	9 Conclusions

	Bibliography
	Curriculum Vitae

