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Voxgraph: Globally Consistent, Volumetric Mapping
using Signed Distance Function Submaps
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Abstract—Globally consistent dense maps are a key require-
ment for long-term robot navigation in complex environments.
While previous works have addressed the challenges of dense
mapping and global consistency, most require more computa-
tional resources than may be available on-board small robots. We
propose a framework that creates globally consistent volumetric
maps on a CPU and is lightweight enough to run on computa-
tionally constrained platforms. Our approach represents the envi-
ronment as a collection of overlapping Signed Distance Function
(SDF) submaps, and maintains global consistency by computing
an optimal alignment of the submap collection. By exploiting
the underlying SDF representation, we generate correspondence-
free constraints between submap pairs that are computationally
efficient enough to optimize the global problem each time a new
submap is added. We deploy the proposed system on a hexacopter
Micro Aerial Vehicle (MAV) with an Intel i7-8650U CPU in two
realistic scenarios: mapping a large-scale area using a 3D LiDAR,
and mapping an industrial space using an RGB-D camera. In the
large-scale outdoor experiments, the system optimizes a 120x80 m
map in less than 4 s and produces absolute trajectory RMSEs of
less than 1 m over 400 m trajectories. Our complete system, called
voxgraph, is available as open source1.

Index Terms—Mapping, SLAM, Aerial Systems: Perception
and Autonomy

I. INTRODUCTION

IN order to navigate and interact with their environment,
robotic platforms typically build an internal representation

of the observed world. This process, Simultaneous Localiza-
tion And Mapping (SLAM), has been a focus of robotics
research over past decades [1]. Many successful systems
convert input data to a set of features, and use these as the
map representation. Recent systems have shown estimation
of globally consistent, feature-based maps in real-time [2],
[3]. While feature-based maps have proven indispensable for
motion estimation on robotic platforms [4], [5], they are of
limited use for tasks beyond localization due to the difficulties
of extracting the shape and connectivity of surfaces from a
sparse set of samples.
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Fig. 1: A reconstruction resulting from a 400m-long MAV flight through the
search and rescue training site discussed in Sec. VIII-B. In the foreground
a large pile of rubble from a collapsed structure is visible. The trajectory
(green) also contains indoor-outdoor transitions through a building (visible
behind rubble).

Several systems build more geometrically complete rep-
resentations of the environment, producing maps that are
useful for tasks such as obstacle avoidance and path planning.
Implicit surfaces represented as Signed Distance Functions
(SDFs) have emerged as an effective representation for this
purpose. The move away from sparse features, however, makes
producing a globally consistent map challenging, since global
optimization of the map quickly becomes intractable as the
amount of data increases. Many existing approaches, therefore,
are limited to operation in small-scale environments where
drift is limited, or store raw input data such that a globally
accurate map can be calculated from scratch as further data
becomes available.

This paper introduces a novel system for building globally-
consistent volumetric maps on a CPU. Central to our approach
is the representation of the world as a set of overlapping
SDF submaps. In contrast to similar proposals, we do not
compute the full sensor trajectory, but propose a map-centric
approach instead. In particular, the proposed system estimates
globally consistent submap poses based on the dense map
itself, utilizing the underlying SDF representation to perform
geometric alignment. We propose geometric constraints that
are efficient enough to perform global optimization of the map
frequently, and in real-time. Furthermore, we formulate the
problem as a graph optimization and include odometry and
loop closure constraints. In several experiments we show the
efficacy of the resulting system for globally consistent large
scale dense mapping and demonstrate its use on several MAV
systems.

In summary the contributions of this paper are:
• A novel submap registration method based on the Eu-

clidean Signed Distance Function (ESDF), points on the
level-set, and constraint subsampling.

• Inclusion of global loop-closures from traditional meth-
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ods alongside the SDF registration constraints, to main-
tain consistency in case of wide-baseline place revisiting.

• Application of an SDF submap-based mapping system to
dynamic MAV flight in a large-scale environment.

• Release of an open-source implementation, as well as
the challenging, novel dataset used for evaluation: a
hexacopter equipped with visual, inertial, LiDAR and
RTK GPS sensors flying through a artificial disaster site.

II. RELATED WORK

SLAM has received considerable research attention in
past decades leading to many successful approaches [1].
While sparse, feature-based representations have been widely
adopted, denser representations of geometry are typically
required to enable motion planning on robotic systems.

Dense SLAM systems have employed a variety of map
representations, the choice of which determines many prop-
erties of the resulting system. Several successful approaches
propose to represent the map as a collection of well-localized
camera frames and corresponding depth maps [6]. In contrast,
Whelan et. al. [7] suggests attaching a deformable mesh
to a pose-graph representing the past trajectory of a cam-
era. The same authors, in more recent work [8], dispose
of trajectory estimation altogether and represent the map as
a deformable collection of surfels. These systems provide
a richer understanding of the occupied space, yet they do
not explicitly distinguish free space from unknown space,
which limits their applicability for autonomous navigation.
Conversely, volumetric maps store information about both free
and occupied space. Occupancy grid mapping, in particular
its efficient implementation in 3D [9], has seen widespread
adoption on robotic platforms [4].

An alternative volumetric representation is based on implicit
representations of surface geometry through SDFs, introduced
in [10]. The efficacy of these representations in fusing high-
rate, noisy depth data from consumer-grade depth cameras,
shown first by Newcombe et. al [11], has led to a rapid
rise in their popularity. Furthermore, the advantages of this
representation have led to their recent adoption on robotic
platforms [12], [13], [14], where the distance field has shown
additional utility for optimization-based motion planning [15],
[16]. However, in order to perform fusion of high-rate data
into a volumetric representation, most approaches discard raw
observational data. This information loss is problematic for
maintenance of a globally-consistent map. In particular, the
lack of a systematic approach for correcting the map to reflect
new information relating past poses, loop-closure being a
prototypical example, means that SDF maps are susceptible
to corruption at a global scale.

Researchers have suggested a number of approaches to
mitigate this problem. BundleFusion [17] proposes to main-
tain a globally-consistent Truncated Signed Distance Func-
tion (TSDF)-based reconstruction by storing raw input data,
globally optimizing the sensor trajectory with each arriving
frame, and frequently re-integrating stored sensor data into
the global SDF. This approach produces state-of-the-art results
in terms of reconstruction quality, but requires significant

computational resources. Several recent works [18], [19] have
proposed efficiency improvements to the original scheme,
principally by utilizing keyframes and computing the global
reconstruction as a function of these keyframes only, as well
as speed-ups to the original global optimization scheme. In
contrast to our proposal however, these works suggest to
maintain a single monolithic map.

Another approach is to represent the reconstructed environ-
ment as a collection of submaps. Corrections to the global map
are performed by adjusting the relative submap positions. This
approach avoids storage and re-integration of raw sensor data.
One distinguishing factor among submap-based systems is the
policy for submap generation. Several works [20], [21] suggest
partitioning the environment into submaps with the goal of
minimizing subvolume overlap. Sensor tracking proceeds by
performing frame-to-model alignment on all submaps within
the sensor viewing frustum. Global consistency is maintained
by optimizing a graph linking submaps and past poses through
observation data. The advantage of spatial partitioning is
that the size of the map remains bounded given a scene of
bounded size. However, sensor tracking in several submaps
simultaneously remains an expensive operation, particularly
on systems lacking a GPU.

Another approach is to generate submaps continuously,
resulting in a steady stream of new submaps, each potentially
overlapping with existing submaps to an arbitrary degree. The
advantage of this approach is that the sensor pose, at the time
of frame integration, need only to be tracked with respect to
the current submap. Several works follow this approach [22],
[14], [23] employing variations on the frame-to-submap based
graph optimization scheme to maintain global consistency
of the resulting submap collection. In a different approach,
Fioraio et. al. [24] propose a map-centric system in which the
past trajectory is not considered during optimization of the
dense map. Instead, submaps are constrained directly to one
another through geometric alignment. We extend this work by
proposing to use correspondence-free alignment based on the
ESDF, and propose a weighted subsampling scheme to achieve
real-time performance on computationally limited platforms.
Furthermore, we include loop closure constraints to maintain
consistency in the presence of wide baseline loops and show
the suitability of our approach for MAV based mapping, using
both RGB-D and LiDAR setups.

III. PRELIMINARIES

We parameterize the transformation between coordinate
frames A and B as TBA ∈ SE(3), where TBA : R3 → R3

maps points in frame A to frame B such that pB = TBApA.
Transformations are concatenated as TAC = TABTBC . We
express the logarithmic map as log : SE(3) → se(3), which
maps rotational elements to the corresponding lie algebra
around the identity element.

We assume that the odometry front-end provides estimates
in which the direction of gravity is fully observable. This
allows us to align several frames in our framework with
the gravity vector. Therefore several transformations live in
R3× SO(2) rather than SE(3). We will note where this is the
case.
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Fig. 2: Overview of the proposed system, which generates consistent volumetric maps based on pointclouds, odometry input and optional loop closures. It is
split into a front-end and a back-end, which are discussed in Sec. VI and Sec. VII, respectively.

IV. PROBLEM STATEMENT

Given a sequence of pointclouds produced by a sensor
(frame C) moving through the world (frame W , gravity
aligned) we aim to build a consistent, SDF-based reconstruc-
tion. At time step i we have an estimate of the sensor frame’s
position from odometry, with respect to a local frame O, pa-
rameterized as a rigid transformation TOCi ∈ SE(3). If TOCi

was precisely known at the time of pointcloud capture, existing
techniques [11], [25] could be used to build a monolithic
TSDF map in O. For practical odometry sources, however,
TOCi accumulates error over time. Following reasoning in our
previous work [26], we build a series of submaps {Si}Ni=1

with attached frames {Si}Ni=1 from contiguous sequences of
sensor data. Submaps are defined by their pose in the world
TWSi ∈ R(3)×SO(2) and an SDF. The SDF of a submap Si
is composed of distance and weight functions ΦSi : R3 → R
and ωSi : R3 → R, which respectively map points in R3

to d, a signed distance to the nearest observed surface, and
w, a weighting/confidence measure. Under this setup, the
reconstruction problem is reduced to determining the optimal
submap poses {TWSi}Ni=0.

V. SYSTEM

Voxgraph is divided into a front-end and a back-end (see
Fig. 2). The front-end (Sec. VI) converts incoming sensor
measurements into submaps, as well as constraints to be
passed to the back-end. The back-end (Sec. VI) maintains
this set of constraints and estimates the most likely submap
collection alignment.

VI. FRONT END

A. Submap Creation

Contiguous sequences of input pointclouds are combined
into submaps by ray casting into a spatially hashed voxel grid
(see our previous work [13], [26] for details). The voxel grid
origin is co-located and aligned with its attached frame S,
which is parameterized by its pose with respect to the world
frame TWS . We create new submaps at a fixed frequency
(N time steps) following from the assumption that errors
in odometry estimates accumulate slowly and smoothly, and
therefore submaps that are created over sufficiently short
timescales remain internally consistent. During construction

we also store the sensor trajectory through the submap as a
collection of submap-relative poses,

TSi = {TSiCj , . . . , TSiCj+N }. (1)

Finally, following submap completion, we compute additional
information used by the back-end for submap registration.
In particular, the submap’s ESDF ΦS is computed from its
TSDF as described in [13]. This process propagates Euclidian
distances outside the truncation band used by the TSDF,
allowing distance lookups further from surfaces. Furthermore,
a collection of isosurface points US are calculated through the
marching cubes algorithm [27].

B. Constraint Generation

The front-end signals the back-end to add constraints to
the underlying optimization problem. We implement three
kinds of constraints: odometry, registration and loop closure
constraints.

1) Odometry: We penalize successive submaps’ deviation
from their odometry-estimated relative pose. In particular for
submaps Si and Si+1 joined by the sensor frames {Cl}k+N

l=k ,
we estimate the submaps’ relative transformation through
concatenation of odometry estimates as

T̂SiSi+1 = TCkCk+1TCk+1Ck+2 . . . TCk+N−1Ck+N . (2)

This estimate is passed to the back-end to constrain the
relevant submap frames (see Sec. VII-A).

2) Loop Closure: Our system accepts loop closures from
external sources. Note that the system is agnostic to the source
of loop closures; we tested, for example, DBoW2 [28] in
Sec. VIII-B2. Input loop closures take the form of an estimated
transformation T̂ClCk linking the sensor frame C at time
instances l and k (which are not contained within the same
submap).

Loop closures relate the sensor position at arbitrary time
instances, and therefore generally do not relate submap frames
directly. To accommodate this we determine the two submaps,
Si and Sj which contained these time steps, and look up
the submap-relative poses TSiCl and TSjCk in (1). These
estimates are passed to the back-end (see Sec. VII-B).

3) Registration: Central to this paper’s approach to main-
taining consistency is geometric alignment of all overlapping
submaps. The front-end detects pairs of overlapping submaps
using Axis Aligned Bounding Boxes (AABBs) (see [29]). In
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particular an Oriented Bounding Box (OBB) in the submap
frame S is computed by finding the maximal dimensions of
allocated voxel blocks [13] in each of the axes of S. This
operation is performed once per submap following pointcloud
integration. Then, before global optimization, we compute for
each submap an AABB which bounds the OBB and is aligned
with the world frame W using the current estimate of the
submap pose TWSi . Registration constraints are created for
all overlapping submap pairs, and then sent to the back-end
(see Sec. VII-C).

VII. BACK END

The back-end aligns the submap collection by minimizing
the total error of all pose graph constraints. We solve the non-
linear least squares minimization

arg min
X

∑
(i,j)∈R

||ei,jreg(TWSi , TWSj )||2σr
+ (3)

∑
(i,j)∈O

||ei,jodom(TWSi , TWSj )||2ΣO
+

∑
(i,j)∈L

||ei,jloop(TWSi , TWSj )||2ΣL

where
X = {TWS1 , TWS2 , . . . , TWSN } (4)

are the submap poses, TWSi ∈ R3 × SO(2), and O, R
and L are sets containing submap index pairs joined by
odometry, registration and loop-closure constraints respec-
tively. The squared Mahalanobis distance for the odometry
and loop closure constraints is written as ||e||2ΣO and ||e||2ΣL ,
where ΣO and ΣL represent their covariance matrices. For
the registration constraints ||e||2σR corresponds to the squared
weighted total distance, with scalar weight σR. Note that the
optimization variables TWSi live on a non-linear manifold. We
therefore solve for optimal increments in the corresponding
lie-algebra (see for example [30]). For clarity, however, we
treat the optimization as directly over manifold elements in
the following sections.

A. Odometry Residuals

Odometry residuals are implemented as cost-terms on the
relative pose between submap base-frames, such that for
general submaps Si and Sj we have,

ei,jodom(TWSi , TWSj ) = log(T̂−1
SiSjT

−1
WSiTWSj ). (5)

In the less general case of odometry constraints j = i+ 1 and
T̂SiSi+1 is the odometry-estimated relative pose calculated in
the front-end.

B. Loop Closure Residuals

Loop closure residuals constrain the relative pose of points
within two submaps which are not co-located with submap
frames themselves. For Si and Sj and sensor frames Cl and
Ck we have,

ei,jloop(TWSi , TWSj ) =

log(T̂ClCk(TWSjTSjCk)−1TWSiTSiCl)

where TSiCl and TSjCk are the poses of the sensor at time
steps l and k with respect to their submap frames (see
Sec. VI-B2).

C. Registration Constraints

In this section we describe our method for generating ef-
ficient pairwise registration constraints for submaps produced
by the front-end. We adopt the reasoning behind the Iterative
Closest Point (ICP) algorithm (that two submaps can be
aligned by minimizing the Euclidean distance between points
on their surfaces) and adapt it to utilize the underlying SDF
representation to perform registration efficiently.

Submaps to be aligned by the back-end have a set of zero-
level iso-surface points US , as well as an ESDF ΦS , extracted
in the front-end (Sec. VI). One approach to generating pair-
wise constraints would be to determine point-to-point corre-
spondences between the iso-surface points of submap pairs,
and minimize distance between these pairs. In this commonly
used approach, the correspondence search can be the most
expensive stage.

We propose to use correspondence-free alignment. In par-
ticular, for a point on the iso-surface of Si we are able to
determine the distance to the iso-surface of Sj by reading
the ESDF value at that point. The registration constraint
between two submaps then expresses the total squared distance
difference evaluated for all reading points pmSi of submap Si,

ei,jreg(TWSi , TWSj ) =

NSi∑
m=0

rSiSj (pmSi , TSjSi)2,

where NSi is the total number of iso-surface points USi of
submap Si. The residual rSiSj is given by

rSiSj (pmSi , TSjSi) = ΦSi(p
m
Si)− ΦSj (TSjSi piSi)

= −ΦSj (TSjSi pmSi)

where TSjSi is a function of optimization variables in X
through

TSjSi = T−1
WSjTWSi . (6)

Note that ΦSi(p
m
Si) = 0 for all points pmSi , since these points

lie on the zero-level surface of Si by construction. Figure 3
shows a simplified example of a registration constraint.

In addition to the loss function itself, the solver also uses its
first derivative. This Jacobian is obtained by differentiating the
residual over the x, y, z and yaw coordinates of the pose of the
submaps Si and Sj . For brevity, we represent the combination
of these coordinates with q and state the general form of the
solution, namely

∂rSiSj (pmSi)

∂q
= −

∂
[
ΦSj (TSjSi pmSi)

]
∂q

= −
∂ΦSj (s)

∂s

∣∣∣∣
s=TSjSi pm

Si

∂
(
TSjSi pmSi

)
∂q

.

The first term corresponds to the derivative of the ESDF’s
trilinear interpolation function [31], given by

ΦSj (s) = gTBTh(s)



REIJGWART et al.: GLOBALLY CONSISTENT, VOLUMETRIC MAPPING USING SIGNED DISTANCE FUNCTION SUBMAPS

Fig. 3: Correspondence-free alignment for a simplified example. The figure
shows a two dimension triangle and its corresponding ESDF (colored plane).
The second triangle is transformed with respect to the original (and offset
in z for clarity). Red iso-surface points are transformed into the ESDF using
TSjSi and generate a cost equal to its value. The gradients of the evaluated
cost are shown as red arrows.

where vector g holds the distances of the 8 voxels surrounding
point p, matrix B represents a constant 8 by 8 binary matrix
and vector function h corresponds to

h = [1 ∆x ∆y ∆z ∆x∆y ∆y∆z ∆z∆x ∆x∆y∆z]
T

where ∆x, ∆y and ∆z are the relative distances from s to its
lower left voxel neighbour v. For example, ∆x = (sx−vx)/r
with r corresponding to the voxel width.

The first term, ∂ΦSj (s)/∂s, can thus conveniently be com-
puted as a byproduct of the interpolation operations used to
get the distance itself. The second term, ∂

(
TSjSi pmSi

)
/∂q,

describes how point pmSi moves through submap Sj as the
relative transformation TSjSi gets updated, and is well known.

D. Registration constraint sub-sampling

Given the typically large number of points on iso-surfaces
within each submap, joint minimization of the registration
error for all surface points of all pairs of overlapping submaps
is computationally expensive, even for modestly sized maps.
In this section, we describe our proposal for increasing the
computation efficiency of pairwise registration constraints
through sub-sampling.

We propose to approximate the registration constraints by
using only a random subset of their residuals within each
solver iteration. The resulting nonlinear optimization shares
some similarities with Stochastic Gradient Descent (SGD),
which has seen successful application to SLAM problems
in the past [32]. For each iso-surface point pmSi in USi we
determine a weight ωSi(p

m
Si), by interpolating the weights

of the voxels that surround it. The voxel weights provide a
confidence measure on the distance estimated by each voxel.
In a given solver iteration k, the registration error for a
submap pair Si,Sj can be approximated by evaluating the
registration error over the iso-surface point sub-set Vk. We
obtain the subset Vk by drawing NVk samples from USi with
replacement, where the probability of drawing each point vmSi
is proportional to its weight w = ωSi(v

m
Si) (see Algo. 1).

VIII. EXPERIMENTS

In this section we aim to validate our claim that the proposed
system efficiently generates globally consistent SDF maps.
To evaluate reconstruction performance we present simulation

Algorithm 1: Approximates the registration cost between two submaps using
weighted sampling.

Input: Submap Si’s iso-surface point set USi ,
their weights ωSi and the number of points NSi
Submap Sj’s SDF ΦSj
Sampling ratio α
Relative transformation TSjSi

Output: Approximation of ei,jreg(TWSi , TWSj )

1: function REGISTRATIONERRORTERM
2: eij ← 0
3: for m← 1 to αNSi do
4: draw vm from USi with probability ∝ ωSi(vm)
5: eij ← eij + ΦSj (TSjSi vm)2

6: end for
7: eij ← 1

αe
ij

8: return eij

9: end function

experiments (Sec. VIII-A) where access to ground truth ge-
ometry is readily available. In Sec. VIII-B we present field
experiments conducted on an MAV flying through a large
outdoor scene and evaluate trajectory accuracy as a proxy for
reconstruction performance. Lastly we show qualitative results
from an RGB-D equipped MAV mapping an industrial space.

A. Simulation Experiments

In this section we present a quantitative analysis of the
proposed constraint sub-sampling strategy. We simulated a
LiDAR-equipped MAV flying a 242 s trajectory around a
multi-story building using Rotors simulator2. Drift is simulated
by perturbing ground truth odometry with additive, biased
Gaussian noise, which produces position and yaw errors
which accumulate over time. The final error in the simulated
odometry output, used as input to voxgraph, is 9.88 m.

We measure system performance in terms of reconstruction
error. In particular, we fuse all submaps into a single map in
the Global frame G. We then compute a ground truth SDF
ΩGT from the simulation environment using an open-source
tool developed for this purpose3. As the ground-plane is a
large, geometrically simple object that is well reconstructed by
all systems, it tends to dominate the average error, pushing it
towards a low constant value. We therefore exclude it from the
evaluation to highlight trends more effectively. We calculate
the Root Mean Squared Error (RMSE) error,

Ep =

 ∑
pG∈O

[ΦG(pG)− ΦGT (pG)]
2

1/2

, (7)

where ΦG(pG) and ΦGT (pG) are the SDFs of the estimated
and ground truth global maps evaluated at pG. The set of all
observed voxels in fused map is denoted O.

We perform 120 experiments in which we vary the sub-
sampling ratio between 100% and 0.01% and compare the

2https://github.com/ethz-asl/rotors simulator
3https://github.com/ethz-asl/voxblox ground truth

https://github.com/ethz-asl/rotors_simulator
https://github.com/ethz-asl/voxblox_ground_truth


IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED OCTOBER, 2019

0

2

4

6
To

ta
l s

ol
ve

r r
un

tim
e

Importance sampling
Uniform with weight
Uniform ignoring weight

0
1
2
3
4

ES
DF

 R
M

SE
 [m

]

10−310−210−1100

Sampling ratio [log]

0

2

4

6

Tr
aj

ec
to

ry
 R

M
SE

 [m
]

Fig. 4: Solver runtime (normalized over the dataset duration), RMSE and
position errors for various constraint sub-sampling strategies and ratios
resulting from a simulation study (Sec. VIII-A). The figure shows that, in this
experiment, there is no observable performance degradation until constraints
are sub-sampled at below 5%.

weighted sampling strategy introduced in Sec. VII-D to two
alternative methods. In the first, we uniformly subsample the
points US but use their weights in their cost residuals. In the
second alternative strategy, we perform uniform subsampling
and discard the weights altogether. Figure 4 shows the nor-
malized runtime, reconstruction, and position RMSE for these
experiments. As one might expect, pose graph optimization
run-time decreases linearly with the sampling ratio. Between
sub-sampling ratios of 100% and ∼5% there is no-observable
change in the reconstruction or position errors. This validates
that constraint sub-sampling can be performed to increase
computational efficiency without incurring significant costs in
terms of performance. Furthermore, it shows that weighted
sampling yields more reliable results when high downsampling
ratios are used. For the remainder of this paper we therefore
use weighted sub-sampling and a sampling ratio of 5%, which
is chosen as a conservative trade-off between accuracy and
run-time.

B. Field Experiments
We present results collected on-board a hexacopter MAV

(shown in Fig. 5). All calculations are performed using an
Intel NUC Core i7-8650U processor, which is carried by the
platform. To demonstrate the flexibility of the proposed system
we show results for both LiDAR and RGB-D-based sensor
suites. LiDAR data is produced by an Ouster OS1 LiDAR.
RGB-D data is produced by an Intel RealSense D415 Depth
Camera. In all experiments a time-synchronized camera-imu
setup is used with the visual-inertial odometry pipeline of
Blösch et. al. [33] to provide odometry to the proposed system.

1) Lidar-based Mapping: In this section the MAV flew
through a disaster area designed for training search and rescue
personnel at Wangen an der Aare, Switzerland. Figure 1
shows an example reconstruction produced by voxgraph on
one of these datasets. We perform a quantitative evaluation of
the proposed system performance. As gathering ground truth
geometry of such a large space is difficult, we attached an
RTK-GNSS system to collect accurate positioning informa-
tion during the MAV’s flight. We use this as ground truth

Fig. 5: A hexacopter MAV flying through a search and rescue training
area (Sec. VIII-B1). The platform was equipped with a 64 beam lidar
(visible), monocular camera, time-synchronized IMU, and RTK-GNSS (used
for trajectory evaluation only).

against which we evaluate estimated trajectories. Note that
the proposed system is map-centeric, in the sense the we do
not compute an optimal trajectory. To obtain a trajectory for
evaluation, we take the history of submap-relative odometry
measurements (1) and project them into the world frame using
the optimal submap poses from (3).

We compare the proposed system against state-of-the-art
frameworks for trajectory estimation. In particular, we com-
pare against LOAM [34] (LiDAR) and VINS-MONO [5]
(visual-inertial). We also compare against ROVIO [33] (visual-
inertial odometry), which provides odometry estimates to
voxgraph. This is included to show the performance of the
proposed system without submap registration.

We evaluate the proposed and comparison frameworks using
Absolute Trajectory Error (ATE) [35]. Prior to evaluation, we
globally align the visual-inertial systems over 4 Degrees of
Freedom (DOF) and LOAM over 6 DOF (necessary because
the estimated trajecory is not gravity aligned). The estimates
produced by the proposed system, as well as the ground truth
trajectories, are shown in Fig. 7. We compute the RMSE
between corresponding samples on the estimated and ground
truth trajectories. Both the proposed and comparison systems
have random elements. We therefore run each trajectory 10
times per dataset and report average figures for both the
RMSE position error, as well as the CPU usage. Results of
these evaluation are shown in Table I. The results show that
the proposed system substantially outperforms the odometry
estimated trajectory, as well as the comparison systems, on all
datasets. Voxgraph achieves 0.83 m, 0.59 m, 0.94 m, 0.52 m
RMSE drift on the four trajectories respectively.

The proposed system runs on < 3 CPU threads on the
processor carried by the MAV. Note that 100% in these terms
corresponds to one (hyper) thread being fully utilized; the
maximum computational load of the Intel NUC Core i7-8650U
is therefore 800%. While the proposed system uses more CPU
than the frameworks we compared to, ours is the only one to
compute a volumetric map, usable for planning and collision-
checking, as part of the CPU usage. If we discount the time
for computing the T- and ESDF, the actual optimization time
is comparable or even less than the comparison systems.

CPU usage for the proposed system is broken down into
its major subroutines in Fig. 6, namely pointcloud integration,
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RMSE (m) CPU (%)

System t0 t1 t2 t3 t0 t1 t2 t3

ROVIO 4.55 1.30 3.52 2.25 47 47 48 47
Voxgraph 0.83 0.59 0.94 0.52 265 230 305 286

Vins-Mono 5.51 - 1.11 - 159 - 157 -
Loam 2.64 1.29 6.43 3.55 131 129 125 127

TABLE I: RMSE for the field experiments conducted in Sec VIII-B. The
proposed method voxgraph is compared against two state of the art systems
for trajectory estimation, Vins-Mono [5] and LOAM [34]. The performance for
ROVIO [33], which provides the proposed system with odometry estimates, is
also reported. This result can be interpreted as the front-end-only performance
of the proposed system. Note the results denoted at − indicate that the
estimator diverged.

0 50 100 150 200 250
CPU Usage (%)

integration
esdf

optimization
lidar undistortion

rovio

Fig. 6: A breakdown of voxgraph CPU usage during a typical MAV flight
from Sec. VIII-B. The global optimization scheme suggested in this proposal
consumes 44% of a single CPU core.

ESDF computation, pose-graph optimization, LiDAR undistor-
tion, and ROVIO odometry. Global optimizations use 44% of a
single CPU core. Figure 8 shows global optimization run-times
for each of the 4 trajectories, (again 10 trials per trajectory are
used to generate the results). The maximum runtime for global
optimization is ∼4 s.

2) RGB-D-based Mapping: In order to validate how loop-
closure constraints can be used in the proposed system, we
applied our method to an indoor dataset [26]. The dataset
is collected by an MAV, carrying an RGB-D camera and
vi-sensor [36], flying through an underground industrial site
at ETH Zürich. The dataset contains significant odometry
drift and multiple wide-baseline loops which cannot be cor-
rected using submap registration alone. We therefore utilize
appearance-based place recognition [28] to generate loop-
closure constraints from vi-sensor images. The dataset is
processed on a desktop CPU with 5 cm voxels.

Figure 9 shows the results of mapping using the visual-
inertial odometry system [33] alone, and voxgraph with and
without loop closures. In the first two configurations the
generated map shows significant distortion, resulting from
the MAV revisiting a location with an inconsistent pose
estimate. Inclusion of submap-relative loop-closure constraints
(Sec. VII-B), generates corrects gross map distortions.

IX. CONCLUSION

In this paper we presented voxgraph, a novel framework
for SDF-based reconstruction, aimed at producing globally
consistent maps. The system represents the observed scene as a
collection of overlapping SDF submaps. The system is a map-
centric approach in which global consistency is maintained
through geometric alignment of submaps. For each submap
we compute a refined distance field, the ESDF, as well as
a set of zero-level iso-surface points in the front-end. This
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Fig. 7: The trajectories from the field experiments in Sec. VIII-B produced
by an MAV flying through a large outdoor space used to train search and
rescue personnel. The plots show the voxgraph estimated trajectory (blue),
and RTK-GNSS measurements used to evaluate the system (pink).
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Fig. 8: The global optimization times from the field experiments in
Sec. VIII-B produced by an MAV flying through a large outdoor space used
to train search and rescue personnel. Each data point is generated by a single
global optimization, during one of 10 mapping trials of each of 4 trajectories.

information is used to generate efficient, correspondence-free
registration constraints between submap pairs in the back-
end. We propose to include only a random sub-sample of
residual terms during optimization to dramatically increase
computational efficiency. The efficiency of our registration
constraints allow us to perform global optimization regularly,
for instance after the completion of each additional submap.

The result of the proposed ideas is that the system creates
consistent, large-scale maps in real-time on a lightweight
computer. We show in a simulation study that constraint sub-
sampling has the desired effect of boosting computational
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Fig. 9: Reconstruction of an industrial environment using data collected from
two flights of an MAV using the proposed approach and RGB-D camera data.
Consistency is maintained in the underlying representation through alignment
of SDF subvolumes, even though the input odometry drifts over time. The
top-left figure is the reconstruction using visual-inertial odometry-only, the top
right is with registration constraints, and the bottom figure is using registration
and loop-closure constraints.

efficiency, without dramatically impacting reconstruction accu-
racy. In field experiments, we show that despite not explicitly
estimating an optimal trajectory, and spending the majority of
our computation on generating a global volumetric map, the
proposed system outperforms a state-of-the-art visual SLAM
system and a top-performing LiDAR system, even when
evaluated on trajectory error alone. Furthermore, Voxgraph is
released as open-source.
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[6] J. Engel, T. Schöps, and D. Cremers, “Lsd-slam: Large-scale direct
monocular slam,” in ECCV. Springer, 2014, pp. 834–849.

[7] T. Whelan, M. Kaess, M. Fallon, H. Johannsson, J. J. Leonard, and
J. McDonald, “Kintinuous: Spatially extended kinectfusion,” in AAAI
2012, 2012.

[8] T. Whelan, S. Leutenegger, R. Salas-Moreno, B. Glocker, and A. Davi-
son, “Elasticfusion: Dense slam without a pose graph,” in RSS.
Robotics: Science and Systems, 2015.

[9] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard,
“Octomap: An efficient probabilistic 3d mapping framework based on
octrees,” Autonomous robots, vol. 34, no. 3, pp. 189–206, 2013.

[10] B. Curless and M. Levoy, “A volumetric method for building complex
models from range images,” in SIGGRAPH. ACM Press, 1996, pp.
303–312.

[11] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli,
J. Shotton, S. Hodges, D. Freeman, A. Davison et al., “Kinectfusion:
real-time 3d reconstruction and interaction using a moving depth cam-
era,” in UIST. ACM, 2011, pp. 559–568.

[12] Y. Lin, F. Gao, T. Qin, W. Gao, T. Liu, W. Wu, Z. Yang, and S. Shen,
“Autonomous aerial navigation using monocular visual-inertial fusion,”
JFR, vol. 35, no. 1, pp. 23–51, 2018.

[13] H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart, and J. Nieto, “Voxblox:
Incremental 3d euclidean signed distance fields for on-board mav
planning,” in IROS. IEEE, 2017, pp. 1366–1373.
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