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Abstract— Perimeter patrol enhances the utility of autonomous
surface vehicles (ASVs) by enabling many security and scientific
missions, including harbor protection, water sampling, and geo-
logical survey. We present a novel approach to perimeter patrol
that uses only two sensors: commercial off-the-shelf available
marine radar and the heading information from a GPS. Our
algorithm performs computer vision morphological operations
on the radar image to find a suitable path around shore and
choose an appropriate next waypoint. Our method has proved
robust to a variety of field conditions, allowing us to demonstrate
the autonomous navigation of a 3.5 km perimeter lake.

I. INTRODUCTION

Autonomous Surface Vehicles (ASVs) have many applica-
tions, including surveillance, patrol, and various hydrographic
and oceanographic surveying methods [1]. Perimeter patrol is
an important aspect of ASV behavior, allowing a vehicle to
plot an appropriate course without human interaction and re-
spond to a changing environment while maintaining a constant
distance from shore.

In this paper we introduce a novel method for perimeter
patrol using marine radar. The radar allows our vehicle to
detect the shoreline, and other obstacles, providing data for
intelligent decisions regarding islands, small boats, buoys, and
even waterfowl. Additionally, the long range of the marine
radar provides significant flexibility in the ASV’s patrol dis-
tance offshore. Figure 1 compares raw radar data and satellite
imagery, showing the quality of the shore contour image. The
robustness of the radar data makes our algorithm effective and
reliable.

II. RELATED WORK

Unmanned and Autonomous Surface Vehicles (USVs and
ASVs) date back to World War II, though it was not until
the 1990s that they reached widespread use. They have many
military applications; in particular, ASVs are frequently used
for minesweeping, reconnaissance, and surveillance. Many
minesweeping surface craft, especially those developed be-
fore 1990, have been remotely operated. Only recent Navy
minesweeping ASVs, such as the Remote Mine-hunting Sys-
tem, have been truly autonomous. The Navy has also de-
veloped numerous ASVs for reconnaissance and surveillance
missions, including the Owl MK II and the Roboski, which
are being used for unmanned harbor security missions [2].

Another common application of ASVs is in scientific re-
search, as ASVs are often an ideal platform for sample
collection and oceanographic research. One example of such
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Fig. 1. Comparison of raw radar data (a) and satellite shoreline information
(b). The satellite image is scaled and rotated to match the radar image. Note
that even without post-processing the entire bay is identifiable using the radar.

an ASV is SESAMO, a robot that is designed to collect
data and samples for the study of the sea-air interface [3].
In order to facilitate scientific research, many ASVs are de-
signed to support Autonomous Underwater Vehicles (AUVs).
Ferreira et al. present an ASV platform capable of traversing
a river and supporting AUV missions by acting as a dock
to its companion AUV and using an acoustic modem to
communicate with the submerged vehicle [4]. Similarly, the
ASIMOV project explores on coordination between ASVs and
AUVs for scientific research. The ASV described by Pascoal
et al. is capable of marine and bathymetric data acquisition,
precise path following, and assisting the AUV by serving as
an acoustic relay between the AUV and a support vessel [5].

These ASVs have a wide range of autonomous behavior.
While Benjamin et al. use a behavioral model to handle
avoiding other surface craft in accordance with coast guard
regulations [6], SESAMO relies on human-programmed way-
points for navigation [3].

Marine radar has been used for several autonomous surface
vehicle applications, such as maritime search and rescue. Shi
et al. use radar for detecting small, nearby objects that could
potentially be people overboard. Shi et al. also use radar data
filtering techniques to discard the effect of adverse weather
conditions on radar data [7]. Larson et al. use a radar for short-
term reactive obstacle avoidance. They fuse the radar data with
other short-range sensor data to create an occupancy grid and
make decisions about nearby obstacles using more traditional
path planning methods [8]. Almeida et al. use marine radar
fused with a network of other sensors to detect obstacles and
avoid collisions [9].



Fig. 2. Olin Intelligent Vehicles Lab ASV Medea. Medea is based on a
12-foot Hobie catamaran and has a fold-down mast for an 18 inch radome.

We are the first to propose a shore following algorithm using
marine radar. In addition to a novel application for marine
radar, we also describe a new method for path planning with
a given occupancy grid.

III. PLATFORM

A. ASV

We implemented this algorithm on the ASV Medea (Fig.
2), a research vehicle developed in the Olin College Intelligent
Vehicles Lab. Specifically, Medea is a 12 foot long catama-
ran propelled by an electric vectored thrust system, and is
equipped with a GPS and marine radar. Medea is based on
earlier Olin College Intelligent Vehicles Lab ASVs [10].

Medea uses a high-precision NavCom GPS for localization.
A low-cost Garmin 18” analog radar dome (shown on top of
the sensor mast) is connected to a Garmin Chartplotter, whose
VGA output is input to the main computer through a VGA-
to-USB device. Though there are other systems for accessing
radar data through a PC, we found this to be the easiest and
lowest cost implementation.

B. Software Platform

Our software platform is written in LabView. The lowest
level runs on a National Instruments cRIO module and man-
ages low-level motor control of the vectored thrust system.
The middle level, Medea’s main computer, reads sensor in-
puts, processes those data, and computes a desired driving
command. The highest level of command is an optional ground
station, connected to the vehicle via wireless ethernet bridge,
which visualizes the path of the vehicle and transmits mission
parameters.

We use a highly asynchronous, parallel architecture for
sensor acquisition and data processing. Each sensor driver,
data processing algorithm, and motor controller runs in its
own thread. This architecture allows us to acquire and process
sensor data at different rates. For example, our software
updates and processes radar data once every two seconds,
while updating GPS and drive commands more than once per
seciond. Another advantage of this software system is the log
saving and replay functionality, which allows us to record data

in the field. This, in turn, allows us to test our algorithm with
data from previous field tests, saving both development and
field testing time.

IV. ALGORITHM

Our perimeter patrol algorithm can be divided into two
stages: path identification and direction selection.

In our implementation, the radar is oriented heading up,
where the vehicle is in the exact center of the image and is
facing toward the top of the image. The radar data is stored as
a bitmap, with detected objects represented as non-zero values,
and background represented as zero. Since there is a constant
relationship between pixels (in the image) and meters (in the
physical world), direction and distance to any obstacle in the
radar image can be easily calculated.

A. Path Identification

Our algorithm first finds a path that is offset a set distance,
doffset, from the shore. In order to accomplish this, we
perform the following operations:

1) Dilation: The first operation performed is a morpholog-
ical dilation of the shore image with a 3x3 square structuring
element. The operation is repeated a number of times given
by Eq. 1, where doffset is the desired offset from shore,
csmoothing is a parameter for smoothing purposes, and cm/px

is the number of meters per pixel [11]. In our implementation,
csmoothing has a value of 5, which was determined experimen-
tally.

doffset ∗ 1/cm/px + csmoothing (1)

2) Erosion: We then perform an erosion operation with the
same structuring element as above, and repeat it csmoothing

times. This reduces the shore path to the correct size and
performs a smoothing operation on the shoreline, discarding
many of the more erratic features of the shore [11].

3) Thinning: The thin operation, also known as perimeter
detection or binary edge detection, removes all but the edges
of particles. That is, for any given pixel, the pixel remains set
(has a non-zero value) if it has at least one neighbor that is not
set (has a zero value). This operation leaves only the intended
path around the shore as non-zero, shown in red in Fig. 3.

B. Waypoint Selection

After isolating the path, we then select the next waypoint,
represented as a position vector ~W , to direct the vehicle
toward. The steps are as follows:

1) Staying on Path: We begin by finding the distance (from
our current position, at the center of the image) to each point
along the identified path, as well as the distance to the closest
point on the shore. Specifically, ~Pshore is the vector to the
closest position on the shore, ~Ppath is the vector to the closest
position on the path, and ~Pcurrent is the current position vector
of the vehicle. Eq. 2 describes the desired relation, where
dproximity is a parameter for how close to the path the vehicle
must be to be considered on path, in meters.



Fig. 3. Radar image after undergoing morphological operations to isolate the
path around the shore. The white objects are obstacles as detected by radar,
and the red path represents the allowed path around the shore.

||~Ppath − ~Pcurrent|| < dproximity (2)

If the relation in Eq. 2 is false, then the vehicle is not on
the desired path, and we set the waypoint to be the closest
point on the path, ~W = ~Ppath, to correct this error.

2) Selecting a direction: If the vehicle is within dproximity

of the path, we select a waypoint on the path that would
result in patrol in the correct direction – either clockwise or
counterclockwise, as selected by the user.

We achieve this by first finding all points on the path
that are within dwaypoint of ~Pcurrent, and denote this set as
S. dwaypoint is a parameter for the desired distance to next
waypoint, in meters. For every position vector in S, denoted
~Si, we calculate two vectors (Eq. 3), and then take their cross-
product (Eq. 4).

~a = ~Pshore − ~Si

~b = ~Pshore − ~Pcurrent (3)

~c = (~a×~b) (4)

Since ~a and ~b only have î (horizontal direction in the
image plane) and ĵ (vertical direction in the image plane)
components, their crossproduct is in the k̂ (out of the image
plane) direction. Based on which direction we wish to patrol
in, we select either the position vector in S with the largest
magnitude of ~c (if traveling counterclockwise) or the smallest
magnitude of ~c (if traveling clockwise) to be the next waypoint
( ~W ).

C. Driving Command

Given a waypoint ~W , we then formulate a velocity and
heading driving command. By computing 6 ~W , we obtain the
desired change in heading. We can then add this value to the
Course over Ground (CoG) from our GPS to give absolute

Fig. 4. GPS log of ASV Medea’s lake patrol at Lake Waban. The yellow
path is the path of the ASV around the lake. The patrol took 60 minutes and
spanned approximately 3.5 km.

TABLE I
PARAMETER VALUES USED FOR FIELD TEST

Parameter Symbol Units Value

Smoothing Constant csmoothing iterations 5
Waypoint Distance dwaypoint meters 20
Proximity Distance dproximity meters 5

Desired Offset Distance doffset meters 11

desired heading. We use a user-defined velocity target, as
the ideal behavior is to have the vehicle patrol at a constant
velocity. Our software platform then uses the absolute desired
heading and velocity combined with Speed over Ground (SoG)
and Course over Ground (CoG) from the GPS to steer and
drive the vehicle.

V. RESULTS

We conducted perimeter patrol tests at Lake Waban, an
inland lake with a perimeter of approximately 3.5 km. After
several short range tests, we conducted an autonomous long-
range mission. During this test, we circumnavigated Lake
Waban, successfully avoiding obstacles and accurately tracing
shore contours. The system correctly identified and avoided
all landmasses and smaller obstacles, including small sailboats
and even moving waterfowl. The path of the vehicle during
the test is shown in Fig. 4, and Table I shows the parameter
values used. It should be noted that most aberrations from the
satellite-image shore line are due to the differences between
the satellite image and the actual shore during our field test.

The quantifiable results of this test are shown in Fig. 5. The
spike in error at t = 16 minutes is due to an implementation
bug that has since been fixed. We find that the vehicle was
within 1 meter of the desired distance from the shore 64.9%
of the time. This number could be improved by decreasing the
proximity radius, since the vehicle would track the path more



Fig. 5. Error between desired distance from shore and actual distance from
shore as a function of time (blue). We also indicate proximity distance from
shore (red) as a reference point. For the most part, the algorithm recovers
from errors quickly, especially in cases over the proximity distance limit. In
the area around t = 16 minutes, the high error is due to an implementation
problem that has since been fixed.

closely. As can be seen from Figure 5, the vehicle’s error
from path exceeds the proximity radius only 7 times over
the course of an hour-long test (a total of 5.14%, including
deviations due to the implementation error), and recovered
within 10 seconds in each case (excluding t = 16 minutes).
Moreover, we find that the vehicle rarely moves closer to land
than desired, spending only 0.15% of the travel time more than
a meter too close to the shore. This is a particularly desirable
property, as straying too close to shore may result in grounding
and other complications that could damage or disable an ASV.

VI. FUTURE WORK

This paper presents a method for shore identification and
tracking. We consider a number of additional uses for the
system including utilizing more sensing, further processing,
and reducing cost.

To improve obstacle detection, avoidance, and tracking, we
are considering the addition of a LIDAR laser rangefinder to
the system. The LIDAR would allow us to track non-water
targets with improved accuracy at a greater update rate than
the radar. Similar LIDAR-based tracking systems have been
used extensively on land-based vehicles [12][13].

We can reduce the system’s cost by removing the GPS
and use only a digital compass’s bearing. While this is a
good solution for the shore-tracking application, GPS systems
are low-cost and provide additional functionality for logging,
waypoint, and tracking utility, so we expect that further
applications will require GPS.

The addition of a vision system would allow us to label
radar obstacles enabling new behaviors such as specific object
tracking and following maneuvers. A vision system could
also augment the obstacle detection methods we currently
employ in a similar manner to combined LIDAR-vision based
approaches [14].

VII. CONCLUSION

We have demonstrated the viability of a perimeter patrol
algorithm using only marine radar and GPS heading. Our

algorithm allows for robust shoreline patrol with low-cost
sensors and limited computational requirements. We find that
the algorithm is successful in a variety of shoreline and
obstacles environments. We believe these features are ideal for
an ASV in a patrol, surveillance, survey, or sampling mission
close to shore.

This algorithm could also be used for obstacle avoidance
given other types and quantities of sensors, as it operates on
an occupancy grid and creates a suitable path around any
sufficiently large obstacle. Thus, we could easily adapt this
system for an autonomous ground vehicle or an autonomous
surface vehicle with a different sensor array.
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