
Real-Time Visual-Inertial Mapping, Re-localization and Planning
Onboard MAVs in Unknown Environments

Michael Burri, Helen Oleynikova, Markus W. Achtelik and Roland Siegwart
Autonomous Systems Lab, ETH Zürich

Abstract— In this work, we present an MAV system that
is able to relocalize itself, create consistent maps and plan
paths in full 3 D in previously unknown environments. This
is solely based on vision and IMU measurements with all
components running onboard and in real-time. We use visual-
inertial odometry to keep the MAV airborne safely locally, as
well as for exploration of the environment based on high-level
input by an operator. A globally consistent map is constructed
in the background, which is then used to correct for drift of
the visual odometry algorithm. This map serves as an input to
our proposed global planner, which finds dynamic 3 D paths
to any previously visited place in the map, without the use of
teach and repeat algorithms. In contrast to previous work, all
components are executed onboard and in real-time without any
prior knowledge of the environment.

I. INTRODUCTION

Small multi-rotor helicopters, to which we refer as Micro
Aerial Vehicles (MAVs), have drawn the attention of both
research groups and industry, because of their size, light
weight and great versatility. However, the agility of these
platforms also creates great research challenges in the fields
of localization, mapping, control and planning. Thanks to
recent advances in mobile and light-weight computers, and
developments in on-board state estimation [1]–[3], MAVs
are more and more capable of navigating without the aid
of external motion tracking systems. This makes them very
compelling platforms for industrial inspection or search and
rescue missions, especially in cluttered environments.

Such scenarios present problems even for human opera-
tors, where fast reaction times are necessary to safely operate
the MAV in close proximity to obstacles. This becomes even
more difficult when the MAV is far away, or when line
of sight cannot be maintained. While low-level stabilization
tasks can be taken over by the computer, humans are still
vastly better at judging and prioritizing, for instance during
exploration or determining points of interest for inspection.

We suggest using local visual-inertial odometry in the
control loop, enabling an operator to explore previously
unseen environments based on first person view and high-
level velocity commands. During this exploration phase, our
mapping module creates a dense globally consistent map
of the environment. When the MAV needs to return to the
starting location, for instance to exchange the battery, we
employ this global map for two purposes: First, we use

The research leading to these results has received funding from
the European Community’s Seventh Framework Programme (FP7)
under grant-agreement n.608849 (EuRoC). (email:{michael.burri,
markus.achtelik}@mavt.ethz.ch, oelena@student.ethz.ch,
r.siegwart@ieee.org).

Fig. 1: Instant of the flight experiment, following the trajectory back to the
take-off position.

a global planner to find a short and feasible dynamic 3 D
path, even if the explored path contained branches. This
distinguishes our approach from teach and repeat approaches
[4], where the travelled path is followed back exactly even
if it contained detours. Second, once a feasible path is
found, we relocalize the MAV against the global map and
correct for drift of the visual odometry system while the
path is followed. The generated map is compact and can be
preloaded to plan a path to any previously visited location,
for instance to continue an inspection task after changing
batteries. An example image of the final system in action
is shown in Fig. 1. With all computation running onboard,
our system is independent of brittle data links and off-board
computation. This is crucial as a safety feature for a robust
system, where the robot must be able to return on its own
in case of communication loss.

The contributions of the paper are as follows: We show
how to incorporate local maps from our visual-inertial odom-
etry estimator into a globally consistent map. Online re-
localization is performed against this map to compensate
for drift in the visual-inertial odometry system. We present
how to build a dense 3 D occupancy grid, represented as an
octomap [5], from this sparse posegraph. Lastly, we introduce
an improved version of the 3 D path-planning algorithm
proposed by Richter et al. [6]. Our version is able to handle
state constraints (e.g. maximum velocity, acceleration), has
improved numerical stability and reduced computation time.

All components are running onboard a real MAV in
flight while operating in a cluttered environment – to our
knowledge, this is the first MAV running vision based
localization, mapping, and planning without prior knowledge
of the environment entirely onboard and in real-time.



II. RELATED WORK

Heng et al. [7] show a system on-board a helicopter
that uses 3 D occupancy grids built from stereo images to
get a 3 D representation of the environment. But the 3 D
occupancy grid is directly built from the visual odometry
estimates which leads to significant drift. They also perform
bundle adjustment and loop closure off-board, but discard
the improved external pose estimate, since it leads to jumps
in their planner and relies on constant network connectivity.

Similar work was also done by Schmid et al. [8], where a
local 3 D occupancy grid was built using the onboard visual
odometry. The operator was able to guide the MAV using
waypoints in the 3 D occupancy grid representation and a
local planner connected the current position with the desired
position using a down projected 2 D obstacle map.

Michael et al. [9] demonstrate the utility of vision-based
3 D maps for inspection tasks such as mapping earthquake
damaged buildings. Their system is operated entirely in tele-
operation, but records vision-based maps from both ground
and flying robot. The maps are voxel-grid based and aligned
and fused together using iterative closest point and a strong
prior on the take-off position of the helicopter relative to the
ground robot.

A commonly used strategy for homing and returning to
a previous position is teach and repeat, based on either
laser or visual data. Furgale et al. [4] were one of the first
to show successful homing with visual teach and repeat
on a ground robot. However, teach and repeat is always
limited to following the same trajectory and finding the same
viewpoints as the original demonstration, which can lead to
needing to point the camera backwards or suboptimal paths.
Having a global map to do the planning in allows us to
overcome these limitations.

Richter et al. [6] was one of the first to show global
planning for MAVs, and successfully demonstrated aggres-
sive flight without external tracking. A laser scanner was
used to relocalize against a previously recorded map and
a global plan was calculated before flying. To reduce the
computational complexity, a straight line solution is found
using RRTStar [10]. Because straight lines are not well suited
for MAV dynamics, we use high order polynomials to get a
smooth trajectory. In this work the nonlinear optimization is
extended, by including maximum velocity and accelerations
as a soft constraints to account for limitations in the accuracy
of the visual odometry estimate.

III. SYSTEM DESCRIPTION

For the experiments we use an AscTec Firefly, equipped
with a stereo camera and an IMU [11]. An overview over the
software components is shown in Fig. 2, with the associated
frame convention. The visual odometry module returns pose
information in a local drifting frame, denoted as mission
frame (M ). This frame is mainly used to keep the UAV
airborne safely and avoid big disturbances on the controller.
In addition a local map around the MAV is built and could
be used for local collision avoidance, which is not part of
this work.

State Estimation!

Visual 
Inertial 

Odometry!
Estimator!

Sparse Mapping/Relocalization!

Local Map!
(keyframes as 
vertices, imu 
edges, 3D 
landmarks)!

Loop 
Closure 

Database!
(KD tree of 

BRISK 
descriptors)!

Relocalizer!
(global to 

mission frame 
transform)!

Reference 
Map!

(local map 
from previous 

mission)!

VI Sensor!
(stereo camera,!

IMU)!

MAV!
(Controller)!

Planning!

Dense Mapping for!
Obstacle Avoidance!

Local 
Occupancy 

Grid!

Mission 
Supervisor!

Global 
Planner!
(RRT*,!

polynomial 
optimization)!

Global 
Occupancy 

Grid!

Dense 
Stereo 

(disparity)!

Stored 
Disparity 
Images!

(per 
keyframe)!

Remote!
(velocity 

commands)!

Global

Mission

Body

TGM

TMB

Fig. 2: Overview of the software components running on-board the heli-
copter. All components highlighted in blue are safety critical and running in
the local mission frame (M ). The global mapping and planning are running
in the global frame (G) highlighted in green.

A sparse mapping and re-localization module builds a
globally consistent map in parallel, which is referred to as
global map (G). Having a global map allows our planner
to find full 3 D paths to any previously seen position. The
information of the global map for localization can be stored
very efficiently [12] and thus shared between agents or
reused in future missions.

A mission controller is used as a bridge between the
MAV and the planner. In manual exploration mode, velocity
commands from the operator are forwarded to the MAV.
As soon as the trajectory following mode is activated, the
reference from the global planner needs to be expressed in
the mission frame before sending to the MAV.

IV. LOCALIZATION AND MAPPING

In order to estimate the state of the MAV in the world, we
use a keyframe-based visual inertial odometry estimator [13].
However, all odometry suffers from slow drift over time. This
makes it impossible to perform meaningful global planning,
as a drift in the position estimate of the helicopter relative to
the planned global path may result in collisions with the en-
vironment. To overcome this problem, we build a local map
based on the output of the visual-inertial odometry system
in the background. We are then able to relocalize against
this local map to correct for estimator drift. Furthermore,
the framework allows for running bundle adjustment (BA)
in the background to further reduce errors and drift in the
odometry.

By storing stereo disparity images for keyframes and
associating them with the vertices in the local map, we are
additionally able to benefit from bundle-adjusted vertex poses
when building a global 3 D dense model for planning.



A. Local Map Building

We use an implementation of the keyframe based visual
inertial odometry described in [13] to get a local pose infor-
mation. This approach tracks keypoints across keyframes in a
camera image and estimates the poses using a joint optimiza-
tion between keypoint tracks and IMU measurements. How-
ever, due to computational constraints, only a small number
of the past keyframes is kept in the optimization. Therefore,
in order to take full advantage of map-based optimization
methods, we build up a local map on the keypoint tracks and
keyframes from the estimator. This results in a sparse pose-
graph with keyframes as vertices and IMU measurements
as edges. The vertices contain image keypoints, keypoint
descriptors, and 3 D triangulated landmarks from keypoint
tracks over several vertices and across the stereo camera
pairs.

An important feature of our posegraph formulation is the
use of missions (sub-maps) with independent baseframes
that align the mission to the global frame. All vertex poses
and landmark positions are expressed in the local mission
frame. This allows us to update the alignment of several
sub-maps relative to each other by changing the baseframe
transformation between them, without having to update every
vertex or landmark in the map. For this application, we
can hold the reference map fixed and constantly update the
tranformation between the local map and reference map as
new information becomes available.

B. Mission Handling

In order to keep the local odometry frame consistent for
controllers, we only modify the baseframe transforms. Before
we can perform relocalization against the map we have
built, we must break off the local map and add it to the
reference map. Additionally, we use a framework that allows
us to access the map from several threads at once and do
transaction-based changes [14]. This allows us to continue
building our incremental local map, while running a BA on
the new reference mission.

However, as a result of BA, the positions of the vertices
often change significantly. Therefore, to keep the map consis-
tent, we need to move the baseframe of the new local mission
based on how much the end of the reference mission moved
during BA.

TVbVa
= T−1

Vb
TVa

(1)
TGMl

= TVbVa
TGMr

(2)

Where TVa is the transformation representing the 6 DoF
pose of the last vertex in the reference mission before the
BA, TVb

is the pose of the same vertex after BA, TGMr
is

the baseframe transformation for the reference mission, and
TGMl

is the update to the baseframe of the local mission.
This adjustment to baseframes also allows us to have more
than one reference mission - that is, the latest information
about the alignment to the last reference mission is used
when creating a new local mission.

C. Relocalization

The benefit of having a bundle-adjusted, fixed reference
mission is to be able to localize against it to correct drift
in the visual-inertial state estimate. This is done by detect-
ing nearest neighbor matches in projected BRISK keypoint
descriptor space [15], followed by outlier rejection using
geometric verification in a RANSAC scheme. Any inliers
from this procedure are added as constraints between the
current vertex and triangulated 3 D keypoints in the reference
map.

Since we assume estimator drift is slow relative to the
motion of the MAV, we do not need to relocalize at the
same rate as the pose estimator. Instead, we query for loop
closures against the global map at every new keyframe. We
then update the localization estimate by running a non-linear
least squares optimization on all the constraints between
keyframes and landmarks in the past sliding window of
keyframes (typically 20). Both the position of the vertices
and the 3 D position of the triangulated landmarks from
the reference are held fixed, with the only non-fixed term
being the baseframe transformation of the local mission. Re-
projection errors between 2 D keypoints and corresponding
3 D landmarks in the reference missions are the residuals.
More discussion on how relocalization mitigates the effects
of estimator drift can be found in [16].

D. Global Dense Model

While building the local map, we also record stereo
disparity images, store them to disk onboard the MAV, and
associate them with our sparse relocalization map. We only
store disparity maps for keyframes of the visual odometry
(vertices in our posegraph), which minimizes access to
disk. Since keyframes in visual-inertial odometry are already
selected with sufficient motion in-between, this leads to even
and efficient coverage of the covered area.

After breaking off a reference mission and running BA,
we iterate over all past vertices in the reference mission and
re-project the disparity images into the global map using the
updated vertex poses. This allows us to build a 3 D occupancy
grid of the helicopter’s environment. Using the poses after
BA corrects errors and leads to metrically-accurate maps.

V. PATH PLANNING

In this section we describe how we plan paths through the
maps that we generated in Section IV-D. We are interested in
feasible and fast-to-compute solutions that take into account
vehicle dynamics and do not need to stop at every intermedi-
ate point. Based on the analysis on the flat outputs of multi-
rotor MAVs by Mellinger et al. [17], we plan paths in the
flat output space of position and yaw and their derivatives.

Our solution is based on the approach proposed by Richter
et al. [6], who suggest to sacrifice theoretical optimality in
favor of computation time: instead of sampling state vertices
in very high dimension (i.e. snap) and using a polynomial
steering function, they suggest to sample in position only and
use straight-line steering in the first place. Then, the resulting
position vertices are used as support points to compute a



smooth piece-wise polynomial trajectory, while iteratively
handling collisions that were not present in the straight path.
Richter et al. show that for practical applications, i.e. a
reasonable number of samples, their solution finds shorter
paths than the theoretically optimal solution, which would
use a polynomial steer function in the sampling phase.

A. Unconstrained Linear Initial Solution

We compute a linear initial solution following the method
suggested by Richter et al. [6]. We briefly summarize the
essentials in order to understand the non-linear solution and
point out optimizations for both numerical stability and to
save computation time. The value of a polynomial of order
N − 1 with N coefficients at time t can be expressed as:

p(t) = t · c; t =
[
1 t t2 . . . tN−1

]
; c =

[
c0 . . . cN−1

]T
(3)

Where t is a vector containing the powers of t according
to N , and c is a vector containing the polynomial coeffi-
cients. A trajectory consists of M continuous polynomial
segments, where each polynomial is valid from t = 0 to the
segment duration t = Ts,i, i = 1 . . .M . In case of multiple
dimensions, each segment consists of D polynomials. During
the optimization process quadratic cost of the polynomials is
considered, such that the cost over the whole trajectory is:

Jpolynomials =

M∑
i=1

D∑
d=1

Ji,d,cost per polynomial︷ ︸︸ ︷∫ Ts,i

0

N−1∑
j=0

∥∥∥djpi,d(t)
dtj

∥∥∥ · wj︸ ︷︷ ︸
cost per derivative term

(4)

The cost Ji,d for a polynomial in a segment i in dimension
d with its derivatives weighted by wj can be written as:

Ji,d = cTi,d ·Q(Ts,i) · ci,d (5)

We only consider cost of the snap here, thus w4 = 1 and all
other wj are zero. This optimization is subject to equality
constraints in terms of derivatives at the start and end1 of
each segment, and have the form:[

di,d,start
di,d,end

]
︸ ︷︷ ︸

di,d

=

[
A(t = 0)

A(t = Ts,i)

]
︸ ︷︷ ︸

A

·ci,d (6)

Where A is a mapping matrix between c and di,d that
consists of row vectors t and d

dtt according to the specified
end point derivative. Note that both the cost-matrix Q and
mapping matrix A only depend on the segment time Ts,i and
thus are constant over all dimensions for the segment, which
allows for computation-time savings in the case of multiple
dimensions. di,d, Q and A can now be stacked to form a
joint optimization problem over the whole trajectory.

For solving this problem, we refer to Richter et al. [6]
who showed how to solve this as an unconstrained QP, and its

1This does not necessarily have to be at the beginning or end of a segment.
As long as there are enough free parameters, there could also be constraints
at arbitrary times in the segment.

superior numerical stability compared to a constrained QP. In
their method, the mapping matrices A for each segment need
to be inverted, and involve high powers of t. For improved
numerical robustness and lower computation time, we further
exploit the structure of A:

A(t = 0) =
[

d0

dt0 t(0)
T . . . dN/2−1

dtN/2−1 t(0)
T
]T

(7)

A(t = Ts,i) =
[

d0

dt0 t(Ts,i)
T . . . dN/2−1

dtN/2−1 t(Ts,i)
T
]T

(8)

A =

[
A(t = 0)

A(t = Ts,i)

]
=

[
Σ 0
Γ ∆

]
(9)

As a result of the segment time being zero at the beginning,
only the constant parts of t and its derivatives2 are left in
the upper part, why Σ is a diagonal matrix. Similarly, Γ is
an upper diagonal matrix, and only ∆ is fully dense. We use
the Schur-Complement to invert this matrix as follows:

A−1 =

[
Σ−1 0

−∆−1ΓΣ−1 ∆−1

]
(10)

Σ is simple to invert and does not contain high powers
of t. ∆ however does contain high powers of t, but the
dimension and the condition number became much lower
than for inverting the whole matrix A at once.

B. Nonlinear Trajectory Refinement

Up to this stage we assumed that the times Ts,i, needed
traverse each segment, are known, which is not the case in
practice. We are interested in finding solutions with minimal
segment times, while respecting state constraints, such as
maximum velocity and acceleration.

1) Nonlinear optimization problem: We add the segment
times Ts,i as optimization variables, which turn the problem
into a nonlinear optimization problem due to the powers of
t. The cost function needs to be modified by adding the time,
since otherwise the optimizer would drive Ts,i to large values
in order to minimize the cost for snap:

J = Jpolynomials + kT · (
M∑
i=1

Ts,i)
2 (11)

kT is an “aggressiveness” constant that lets us trade snap cost
against time. The total set of optimization variables consists
now of the free end-point derivatives from the linear solution
[6] and the segment times

[
Ts,1 . . . Ts,M

]
. We compute an

initial solution with the linear method described above. For
an initial guess of the segment times, we use 1

2vmax over the
straight line distance between two vertices.

2) Finding maxima: In order to incorporate state limita-
tions such as maximum velocity or acceleration, one option
is to sample the trajectory at a certain interval and add an
inequality constraint to the optimization framework for each
of these samples. This leads to many inequality constraints
that have to be evaluated, and will thus slow down the
optimization procedure significantly for longer trajectories.
In addition, the question raises how to handle these discrete

2Due to the derivatives, the constant part in t shifts right.



sampling points, if the segment times of the trajectory get
adjusted by the optimizer.

The following analysis shows how to compute maxima of
the given 3 D polynomial trajectory analytically for a single
polynomial segment, and is repeated for all segments of the
trajectory. Especially for velocity and acceleration, we are
interested in the maximum of the norm and not in each single
axis. The norm of the velocity can be written in terms of the
polynomials of position as:

vnorm(t) =
√
(ṗ(t)x)2 + (ṗ(t)y)2 + (ṗ(t)z)2 (12)

To find the candidates for the maximum, we need to compute
the derivative with respect to time:

dvnorm(t)

dt
=

2 (ṗ(t)x · p̈(t)x + ṗ(t)y · p̈(t)y + ṗ(t)z · p̈(t)z)
−
√
(ṗ(t)x)2 + (ṗ(t)y)2 + (ṗ(t)z)2

(13)
To find an analytical solution for which the numerator
becomes zero, we do the following: Recall that when tak-
ing time derivatives of a polynomial, there are additional
coefficients from taking derivatives of the powers of t. For
convenience, we denote the coefficients of ṗ(t) as ċ, and so
forth. A multiplication of two polynomials can in general
be expressed as a convolution of their coefficients, thus the
problem becomes:

t · (ċx ∗ c̈x) + t · (ċy ∗ c̈y) + t · (ċz ∗ c̈z)
!
= 0 (14)

t · (ċx ∗ c̈x + ċy ∗ c̈y + ċz ∗ c̈z)
!
= 0 (15)

The expression in (15) is a polynomial, for which we
compute the real roots with the numerically stable Jenkins-
Traub algorithm [18]. The real roots within [0, Ts] in are then
candidates for the maximum, which we find by numerical
evaluation of vnorm(t) at tcandidate. The same methodology can
be applied for higher order derivatives such as acceleration.

3) Incorporating state constraints in the nonlinear opti-
mization problem: A straight-forward solution is to use an
optimization method that is able to incorporate nonlinear
inequality constraints. This limits however the choice of
optimization methods. Also, it turned out in practical experi-
ments that adding inequality constraints increases the number
of necessary iterations significantly and the optimizer does
not always respect the constraints. Since state constraints
are more guidelines than hard constraints in our case, we
implemented state constraints as soft constraints by adding
an additional cost term:

Jsoft-constraint = exp(
xmax, actual − xmax

xmax · ε
· ks) (16)

ε defines how much the deviation from the maximum is
tolerated and ks is a constant that allows to set how much
the violation of a constraint is weighted. This is no critical
tuning parameter in practice, just the order of magnitude has
to be right.

4) Handling collisions in the optimized path: A problem
of the suggested method is that the optimized trajectory
computed from the straight-line solution from the RRT*
planner is not guaranteed to be collision free anymore,

since polynomials tend to overshoot at the vertices of the
straight line path. First, we highlight that this overshoot is
reduced significantly by the nonlinear optimization over all
parameters of the trajectory (see Section V-C). Similarly to
[6], we handle the remaining collisions by adding additional
vertices on the straight line, which is guaranteed to be
collision free, as shown in Fig. 3.

Fig. 3: Handling of collisions on the polynomial path: we project the
collision onto the straight-line path and add a vertex. This pulls the
polynomial towards the straight line path and slows down the trajectory.

C. Path Optimization Results

We give a brief analysis of the path optimization frame-
work on given vertices, as they would result from a RRT*
planner. The RRT* planner is excluded in this analysis,
since its solutions are highly dependent on the environment.
All polynomials in the experiments are of order 9, i.e. 10
coefficients, continuous up to snap, and we optimize over
the integral of squared snap.

position x (m)
-2 0 2 4 6 8

p
o
s
it
io

n
 y

 (
m

)

-2

-1

0

1

2

3

4

5

6

7

8

position x (m)
-2 0 2 4 6 8

p
o
s
it
io

n
 y

 (
m

)

-2

-1

0

1

2

3

4

5

6

7

8

Fig. 4: Comparison of the initial linear solution (left) with the optimized
solution (right), through vertices aligned in multiple squares of 5 × 5m.
The optimized solution stays closer to straight-line connections, while still
staying withing the maximum speed limits. The time required to fly along
this trajectory is 200 s for the initial, and 112 s for the optimized solution.

We compare the initial solution from the linear method
with the optimized version through vertices aligned in mul-
tiple 5 × 5m squares, as shown in Fig. 4. The optimized
version stays closer to the straight-line connections, which
is important in order to avoid too many re-iterations for
inserting additional vertices in case of collisions of the
optimized path with the environment (see Section V-B.4).

We randomly generated sets of vertices and show timings,
for the initial linear solution tinit, the nonlinear optimization
topt, and whether generating the trajectory was successful. A
trajectory is considered successful, if it does not exceed the
state limits (vmax = 2m/s, amax = 2m/s2, ) by 10 %. For each



number of segments, ran the optimization over 100 different
paths, where the average distance of the vertices was 5 m.

segments tinit (ms) topt (ms) std dev topt (ms) success (%)
3 0.117 48.0 12.1 96
5 0.171 143 41.4 95
10 0.297 584 169 91
20 0.565 2157 632 88
50 1.58 10110 1290 47

TABLE I: Timings for the path optimization for selected numbers of
segments. tinit is the time required to compute the initial linear solution,
while topt is the time for the non-linear optimization.

The results are shown in Table I. From 3-20 segments,
we have a high success-rate, while the optimized solution is
found within reasonable time.

VI. EXPERIMENTS

To demonstrate the utility of our system for assisting
in inspection and mapping tasks, we designed a series of
experiments closely mimicking real industrial applications.
We used an AscTec Firefly hex-rotor helicopter equipped
with a computer and our visual inertial sensor [11]. Images
are processed at 20 Hz and fused with the IMU to get
higher update rates for the controller. From the keyframes
we store the position and a disparity image to recreate the
3 D occupancy grid before the planning phase. The two
experiments were conducted in the machine hall at ETH
and show our algorithm working in an unstructured 3 D
environment. All processing is done online on the MAV with
no external computation.

A. Map Generation and Homing

12
10

8

position y (m)

6
4

2
012

10position x (m)
8

6
4

2
0

1

2

3

4

0

p
o

s
it
io

n
 z

 (
m

) manual flight
automated flight
planned trajectory

Fig. 5: Flight back to the take-off position. The manual flight in green
was used to create the map. At the end of the green trajectory the homing
command was given, to trigger the planner and fly back to the original
position.

In the first experiment the MAV starts without any prior
information about the environment. The pilot gives high-level
position commands in order to explore the environment. This
phase is shown in green in Fig. 5. During the flight, the MAV
builds a local 3 D occupancy grid from the stereo images that
contains some drift from the visual odometry. It also builds
the sparse posegraph described in Section IV-C. After some
minutes of flight the MAV receives the signal to fly back to
the starting position. This event could also be triggered by a
low battery threshold or loss of connectivity, to safely return.

After a few iterations of BA the global 3 D occupancy
grid is generated by projecting the disparity maps from the
optimized keyframe positions into 3 D space. This is needed

to reduce drifts in the 3 D map and make the global planning
consistent. The planned path together with the resulting 3 D
occupancy grid is shown in Fig. 7. Using snap optimized
polynomials leads to smooth paths, that are easy to follow
for MAVs. The heading is always set into the direction of
flight, which would allow for dynamic obstacle avoidance
from forward-facing camera data.

time (s)
0 5 10 15 20 25 30 35

p
o

s
it
io

n
 (

m
)

0

2

4

6

8

10

12
x
y
z
x

ref

y
ref

z
ref

Fig. 6: Flight back to the take-off position including the landing phase.
The planned trajectory is shown in bold and the successful relocalizations
are shown with horizontal lines. After executing the planned trajectory, the
MAV returns into teleoperation mode. The noticable lag in the controller is
due to the internal reference model.

Fig. 6 shows the planned path in bold and the flown
trajectory expressed in the drifting odometry frame. To over-
come drifts, the re-localization module attempts to localize
the local map against the bundle-adjusted reference map
at every keyframe (approximately 4 Hz) and corrects the
reference trajectory if necessary. This is shown with the blue
vertical lines. As can be seen there are only loop closures
at the beginning and the end of the trajectory because of
the large deviations in the viewpoint from the previously
seen trajectory. The results also show that the controller
can handle small jumps in the reference, which shows the
advantage of having the re-localization run separately. In
future work the planner could be triggered for a re-planning
of the current segment in case of new loop closures.

B. Reusing the Previous Map

In the second experiment we used the map generated in
the first mission to plan a path back to the position where
we started the previous trajectory, to ”resume the mission”.
Although this is not necessarily required and the planner
can find feasible paths to any known point in the map. This
is a very useful feature in any real world scenario, where
the limited battery time makes it necessary to return home
quickly, change the battery and continue the original task.
Since the starting position is very similar to the starting
position of the previous mission, good loop-closures are
found and the MAV can relocalize to reuse the previous
3 D occupancy grid for planning. The planned path and the
resulting trajectory are shown in Fig. 8. Due to the random
nature of RRT* and the limited time for planning a feasible
trajectory, the path is different from the first experiment.
Loop-closures are marked with vertical lines and similar
conclusions as before can be drawn. Again the different
viewpoint leads to successful loop-closures mainly at the
beginning and end of the trajectory.



Fig. 7: After the manual flight phase the bundle adjustment is triggered and the global 3 D occupancy grid is generated. Additionally, the operator can
verify the planned path back to the starting position before the MAV starts following it.

time (s)
0 5 10 15 20 25 30 35

p
o

s
it
io

n
 (

m
)

0

2

4

6

8

10

12
x
y
z
x

ref

y
ref

z
ref

Fig. 8: Once the map is generated, it can be preloaded to plan trajectories
to any previously covered position. The target position was set to a similar
position from where the MAV returned before. The resulting trajectory is
shown in bold and the MAV was able to follow it with a small delay. After
executing the planned trajectory, the MAV returns into teleoperation mode.
Successfuly relocalizations are shown as blue vertical lines.

VII. CONCLUSION

In this work we showed successful vision-based homing
entirely on-board an MAV, without any prior information
about the environment. Using BA of a sparse pose graph
and re-localization to landmarks in this pose-graph, we are
able to correct the drifting odometry estimates. This allows
us to create a metrically-accurate 3 D occupancy grid by
projecting disparity maps from the bundle-adjusted keyframe
poses. Once the map is built, it can be used to plan arbitrary
trajectories or repeat a task multiple times thanks to the re-
localization. Finally, we show a planner that finds feasible
3 D paths in short time, which is essential for use with
relocalization: if a successful relocalization causes a large-
enough change in the estimated alignment to the global map,
we trigger replanning the path.

ACKNOWLEDGMENTS

The authors thank Simon Lynen, Marcin Dymczyk and
Titus Cieslewski for providing the mapping framework and
Andreas Jäger for providing the dense stereo pipeline.

REFERENCES

[1] S. Lynen, M. W. Achtelik, S. Weiss, M. Chli, and R. Siegwart, “A
Robust and Modular Multi-Sensor Fusion Approach Applied to MAV
Navigation,” in Proceedings of the IEEE/RSJ Conference on Intelligent
Robots and Systems (IROS), Tokyo, Japan, Nov. 2013.

[2] T. Tomic, K. Schmid, P. Lutz, A. Domel, M. Kassecker, E. Mair,
I. L. Grixa, F. Ruess, M. Suppa, and D. Burschka, “Toward a fully
autonomous uav: Research platform for indoor and outdoor urban
search and rescue,” Robotics & Automation Magazine, IEEE, vol. 19,
no. 3, pp. 46–56, 2012.

[3] S. Shen, N. Michael, and V. Kumar, “Autonomous indoor 3d ex-
ploration with a micro-aerial vehicle,” in Robotics and Automation
(ICRA), 2012 IEEE International Conference on, 2012.

[4] P. Furgale and T. D. Barfoot, “Visual teach and repeat for long-range
rover autonomy,” Journal of Field Robotics, vol. 27, no. 5, 2010.

[5] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Bur-
gard, “Octomap: An efficient probabilistic 3d mapping framework
based on octrees,” Autonomous Robots, vol. 34, no. 3, 2013.

[6] C. Richter, A. Bry, and N. Roy, “Polynomial Trajectory Planning
for Aggressive Quadrotor Flight in Dense Indoor Environments,” in
Proceedings of the International Symposium on Robotics Research
(ISRR), 2013.

[7] L. Heng, D. Honegger, G. H. Lee, L. Meier, P. Tanskanen, F. Fraundor-
fer, and M. Pollefeys, “Autonomous visual mapping and exploration
with a micro aerial vehicle,” Journal of Field Robotics, vol. 31, no. 4,
pp. 654–675, 2014.

[8] K. Schmid, T. Tomic, F. Ruess, H. Hirschmuller, and M. Suppa,
“Stereo vision based indoor/outdoor navigation for flying robots,” in
Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International
Conference on. IEEE, 2013, pp. 3955–3962.

[9] N. Michael, S. Shen, K. Mohta, Y. Mulgaonkar, V. Kumar, K. Na-
gatani, Y. Okada, S. Kiribayashi, K. Otake, K. Yoshida, et al.,
“Collaborative mapping of an earthquake-damaged building via ground
and aerial robots,” Journal of Field Robotics, vol. 29, no. 5, 2012.

[10] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The International Journal of Robotics Research,
vol. 30, no. 7, pp. 846–894, 2011.

[11] J. Nikolic, J. Rehder, M. Burri, P. Gohl, S. Leutenegger, P. T. Furgale,
and R. Siegwart, “A synchronized visual-inertial sensor system with
fpga pre-processing for accurate real-time slam,” in Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA),
2014, pp. 431–437.

[12] M. Dymczyk, S. Lynen, T. Cieslewski, M. Bosse, R. Siegwart,
and P. Furgale, “The gist of maps – summarizing experience for
lifelong localization,” in Robotics and Automation (ICRA), 2015 IEEE
International Conference on. IEEE, 2015.

[13] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and P. Furgale,
“Keyframe-based visual–inertial odometry using nonlinear optimiza-
tion,” The International Journal of Robotics Research, 2014.

[14] T. Cieslewski, S. Lynen, M. Dymczyk, S. Magnenat, and R. Sieg-
wart, “Map api - scalable decentralized map building for robots,” in
Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), 2015.

[15] S. Lynen, M. Bosse, P. Furgale, and R. Siegwart, “Placeless place-
recognition,” in 3D Vision (3DV), 2nd International Conference on,
2014.

[16] H. Oleynikova, M. Burri, S. Lynen, and R. Siegwart, “Real-time
visual-inertial localization for aerial and ground robots,” in Proceed-
ings of the IEEE/RSJ Conference on Intelligent Robots and Systems
(IROS). IEEE, 2015.

[17] D. Mellinger and V. Kumar, “ Minimum Snap Trajectory Generation
and Control for Quadrotors ,” in Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), May 2011.

[18] M. A. Jenkins, “Algorithm 493: Zeros of a real polynomial [c2],”
ACM Transactions on Mathematical Software (TOMS), vol. 1, no. 2,
pp. 178–189, June 1975.


	Introduction
	Related Work
	System Description
	Localization and Mapping
	Local Map Building
	Mission Handling
	Relocalization
	Global Dense Model

	Path Planning
	Unconstrained Linear Initial Solution
	Nonlinear Trajectory Refinement
	Nonlinear optimization problem
	Finding maxima
	Incorporating state constraints in the nonlinear optimization problem
	Handling collisions in the optimized path

	Path Optimization Results

	Experiments
	Map Generation and Homing
	Reusing the Previous Map

	Conclusion
	References

