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Abstract— Localization is essential for robots to operate
autonomously, especially for extended periods of time, when
estimator drift tends to destroy alignment to any global
map. Though there has been extensive work in vision-based
localization in recent years, including several systems that
show real-time performance, none have been demonstrated
running entirely on-board in closed loop on robotic platforms.
We propose a fast, real-time localization system that keeps
the existing local visual-inertial odometry frame consistent for
controllers and collision avoidance, while correcting drift and
alignment to a global coordinate frame.

We demonstrate our localization system entirely on-board an
aerial and ground robot, showing a collaboration experiment
where both robots are able to localize against the same map
accurately enough to allow the multicopter to land on top of
the ground robot. We also perform extensive evaluations for
the proposed closed-loop system on ground-truth datasets from
MAV flight in an industrial setting.

I. INTRODUCTION

Robots are useful for tasks that are too difficult, repetitive,
or dangerous for a human to do, such as monitoring industrial
plants or mapping earthquake-damaged buildings. While
the utility of robots has increased substantially in recent
years, most systems still rely on external sensing or heavily
structured environments.

Recent advances in robot state estimation from cameras,
especially when fused with inertial-measurement unit (IMU)
data, are very promising for allowing robots to operate in
mostly unstructured settings [1, 2, 3]. However, these visual-
inertial simultaneous localization and mapping (SLAM) al-
gorithms accumulate errors in position and heading over time
due to sensor noise and modeling errors. While the effect
of such drift is often insignificant for short-term operations,
reliable long-term operation requires complementing SLAM
with localization against a global reference frame. Most state
of the art robotics systems use external sensing for these
estimates - such as GPS or motion capture systems. However,
such systems heavily restrict the utility of robots in real,
unstructured, GPS-denied environments. A more versatile
solution to handle such situations is to localize against
previously built maps from onboard sensors.

In most of the previous work, localization and map co-
registration was at least partially performed off-board on a
centralized server [4, 5]. In these systems, either relevant
parts of the global model are sent to the robot [6], or the
server directly performs the actual localization [7, 8]. How-
ever, relying on a server connection for off-board localization
leads to jumps due to connectivity loss, and reduces overall
robustness and reliability of the system.

Fig. 1: A typical scenario for robot localization: performing inspection
tasks with an MAV in an industrial environment. This is a 3D pointcloud
reconstruction from stereo of the ETH Zürich Machine Hall, and an MAV
flight trajectory from one of our evaluation datasets is shown.

Our work uses a similar approach in which we combine
the visual-inertial sliding window SLAM [3] with an efficient
loop-closure algorithm [9]. Both algorithms are computa-
tionally efficient enough to be run on-board the robot and
thus remove the requirement of a server connection. Instead
of adding constraints to the global model directly into the
local SLAM formulation as proposed by Ventura et al.. [8]
or Middelberg et al. [7], we aim for a decoupled approach
in which we separate local pose estimation and localization
to a global map. This approach allows us to keep the local
map consistent with the output of the visual-inertial odometry
while separately providing a current estimate of the robot’s
latest alignment within the global frame, called a baseframe
transformation.

By only optimizing over this baseframe transformation,
we are able to add new poses directly from the output
of a visual-inertial odometry system. McDonald et al. [10]
have previously used a similar approach for offline map co-
registration by adjusting baseframe transformations of sub-
maps. We extend their approach to run on-line and on-board
robot platforms.

Heng et al. [11] present a robotic systems which is closest
to the setup presented in this paper. Their work integrates
vision-based pose estimation with building an octomap-based
3D representation of their environment. The resulting map
is used by obstacle avoidance, planning, and exploration
algorithms which run on-board the micro aerial vehicle
(MAV), while localization to a global model is run off-board
on a server. However, due to losses in connectivity to the
server and jumps in the SLAM-optimized position estimate,
they do not use the estimated alignment to the global model



on-board, but only for post-processing the maps.
Another similar system is from Schmid et al. [12], where

they present a multi-camera system entirely on-board an
MAV for indoor and outdoor environments. However, their
lack of localization to an external reference limits the length
of missions they are able to perform, as their only source
of position information is a drifting reference frame. Other
approaches fuse stereo, laser, and GPS on-board an MAV to
mitigate drift and create more accurate estimates than with
a single-sensor [13].

However, being able to localize against a reference map
built with the same sensors as on-board the robot confers
other advantages than just being able to mitigate drift. For
example, having multiple robots registered to the same global
frame allows collaboration between the two, without the
robots necessarily being able to see or communicate with
each other.

For example, Vidal et al. tackle the problem of localizing
and merging maps built from helicopters flying at high
altitude and ground robots [14]. Their work largely deals
with creating different kinds of loop closures between multi-
agent maps, such as from robots rendezvous, GPS fixes, and
co-observations, but off-board and offline.

A clear application of multi-platform collaboration is given
by ground and aerial robot teams for mapping earthquake-
damaged buildings. Since ground robots have long battery
life but very limited mobility in presence of debris, and
MAVs have high mobility but very limited battery life,
a ground-aerial robot team is perfect for such complex
mapping tasks. Michael et al. demonstrate exactly such a
collaboration [15]. Their experiment shows reconstructing
voxel-based 3D maps by fusing the maps built by the aerial
and ground robot from teleoperation. We believe that a
major barrier to performing this task autonomously is getting
accurate enough localization for the MAV to land back on
the ground robot, which we aim to show in the experimental
section of this paper.

The contributions of this work are as follows:
• An integrated visual-inertial odometry (VIO) and local-

ization system that is computationally efficient enough
to run in real-time on-board robots.

• A novel formulation of localization as a rigid baseframe
alignment problem between a local map (VIO output
frame) and a reference map (global coordinate frame).

• We perform evaluations of our complete system on
ground truth data from a representative MAV industrial
inspection scenario (Fig. 1), showing the ability of
localization to significantly reduce estimator drift.

• Demonstration of autonomous ground robot and he-
licopter collaboration using the localization estimates
from the proposed system.

II. BASEFRAME BASED LOCALIZATION

In this section, we present a novel formulation of the
vision-based localization problem utilizing baseframe align-
ment. Our approach is well-suited for running on-board
mobile robots, as it keeps the robot’s local map aligned with

the odometry frame, allowing the map to be built directly
from VIO output. Simultaneously, we update an alignment
to a global reference map, which can then be used for global
planning in existing maps.

A. Map Representation

We represent our map of the robot’s environment as a
map consisting of several missions (sub-maps), each with
a separate pose-graph. In our pose-graph representation,
keyframes form vertices and IMU constraints represent edges
between vertices. Vertices contain 2D keypoints (and their
descriptors) as well as the 3D landmarks triangulated from
keypoint tracks across keyframes. Each mission has its own
baseframe which aligns it to the global coordinate frame
(GTM ), with all vertices and landmarks in the mission
represented in its local frame, as proposed in [10]. This
representation allows us to easily align multiple missions
together without having to change the poses of the vertices
within a mission.

The starting point for our algorithm is the output of
VIO, in our case the sliding window keyframe-based system
proposed by [3]. The VIO system tracks 2D features through
camera frames over time to triangulate 3D landmarks and
establish correspondences between the frames. Using these
constraints and measurements from the IMU, the system
estimates the robot pose through non-linear optimization.
However, due to computational constraints, only a very
limited number of keyframes and landmarks can be kept in
this optimization – the rest are marginalized out whenever a
keyframe leaves the sliding window of poses.

In order to model the robot’s environment, we insert each
keyframe from the estimator as a vertex into a local map.
We then attempt to establish correspondences between 2D
keypoints in this local mission (ML) against previously-
triangulated 3D landmarks in a reference mission (MR) (a
pre-built, optimized map of the same structure as the local
mission).

Fig. 2 shows a representation of the maps shown: the
pose-graph in blue, ML, is the local mission built from
keyframes from the visual-inertial odometry system, and MR

is the reference mission that is previousy bundle-adjusted and
considered fixed. GTML

is the transformation from the local
mission frame to the global coordinate frame, which is the
output of our localization procedure.

B. On-Line Localization

When loading a reference mission, we add all the keypoint
descriptors and their corresponding 3D triangulated positions
(in the MR frame) to a loop closure database. For each new
keyframe from the VIO system, we create a new vertex in the
local mission and query all keypoints against the database.
Since these matches are prone to outliers and incorrect
correspondences, we filter them using a perspective-n-point
(PnP) algorithm in a RANSAC scheme, keeping only inliers
matches from well supported hypothesis. We refer to these
inlier matches as structure matches - that is, matches
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Fig. 2: This figure shows the pose-graph representation used to express the
map of the environment. We use a reference map (MR) built from the
bundle-adjusted output of visual-inertial odometry (VIO), which we hold
fixed in optimization. The local map (ML) is built live on-board the robot
from the output of VIO, and detected keypoints from keyframes (vertices)
in this map are used to query against the reference map to establish 2D-3D
correspondences between the two. The output of our localization algorithm
is a baseframe transform relating the local mission to the global coordinate
frame.

between 2D keypoints of frames in the local mission against
3D landmarks from the reference mission.

The PnP RANSAC algorithm not only provides inlier
structure matches, but also an estimate of the vertex pose
relative to the global frame (to allow matching to structure
across multiple reference missions), GTV .

We can then use this to estimate the alignment of the local
mission to the global frame:

GTML
=G TV ·ML

T−1
V (1)

However, this pose estimate only contains information
from the structure matches in the latest vertex, and is still
prone to sharp jumps and susceptible to outliers. Nonetheless,
using this as the initialization for the non-linear optimization
that follows keeps the optimizer from getting stuck in local
minima, especially from rotation offsets.

C. Optimization Over a Sliding Window

To address this shortcoming, we pose a non-linear least-
squares optimization problem over the structure matches
in a sliding window of N past vertices. This gives us a
more refined estimate of the baseframe alignment, while also
adding some degree of temporal filtering and smoothness.

We pose the optimization problem by using the repro-
jection errors ei between the ith 2D keypoint z in the
normalized image plane seen from vertices in the local
mission to the 3D landmark positions Gpi in the reference
mission as error terms:

ei = zi − ẑi = zi − Π(ML
pi) = zi − Π(GT

−1
ML Gpi), (2)

where ẑ denotes the back-projection of the landmark
position pML

using the projection function Π(·) which takes
3D points to the normalized image plane involving camera
intrinsic and IMU to camera extrinsic calibration.

Unlike [7], where the local poses are optimized based
on their alignment with global 3D landmarks, we hold all
parameters except the baseframe transformation of the local
frame (GTML

) fixed. This makes the problem significantly

Visual 
Inertial 

Odometry 

Loop Closure 
RANSAC PnP 

Reference Map (𝑴𝑹) 

Loop Closure 
Database 
KD tree of 
descriptors 

Transform 

 𝑇𝐺 𝑀𝐿
 

2D-3D 
Structure 
Matches 

VI Sensor 
 stereo 

camera,  
IMU 

Image data 

IMU data 

Local Map (𝑴𝑳) 
Vertices (keyframes) 
Edges (inertial edges) 

Baseframe ( 𝑇𝐺 𝑀𝐿
) 

Keyframes 

Pose  
Estimate 

3D landmarks 
and descriptors 

Sliding Window 
Localization 
Non-Linear 

Optimization 

Global Planner Local Planner Local Collision 
Avoidance Map 

Global Collision 
Avoidance Map 

Fig. 3: An overview of our implementation of the localization system
running on-board both of the robots described in Section V. The input
is visual-inertial sensor data and a bundle-adjusted reference map, and the
output to the rest of the robot system is a transformation describing the
alignment of the local odometry frame to the global reference frame.

faster to solve and keeps the local frame aligned to the
odometry frame.

We also indirectly benefit from inertial data for both local
and reference missions. IMU data renders roll and pitch
observable, therefore allowing us to keep both missions
gravity-aligned. This removes 2 degrees of freedom from
the optimization, allowing is to parameterize the baseframe
transformation in only 4 terms by projecting into the tangent
space of the z component of the quaternion, Eq. (4). We then
re-normalize the quaternion at each optimization iteration.

GTM =
[
x y z qx qy qz qw

]
(3)

P(GTM ) =
[
x y z qz

]
(4)

After optimization, new estimate of the transformation align-
ing the local VIO frame (ML) to the global map (G) is
available for path-planning and obstacle avoidance.

III. SYSTEM AND IMPLEMENTATION

In this section, we describe the design of our on-board,
real-time mapping and localization system, and how it in-
tegrates with local and global planning. All components in
this section were chosen with two constraints in mind: real-
time performance on-board real systems, such as payload-
constrained MAVs, and keeping a consistent odometry frame
for robot controllers while giving an accurate estimate of cur-
rent pose within the global frame. Fig. 3 shows an overview
of the system and data flow between the components.

A. Planning Considerations

The advantage of our proposed approach is the ability to
separate global and local planning and trigger a global replan
only when the estimate of the frame alignment changes
sufficiently. The global planner plans a path in a 3D collision
map (in our implementation, an octomap representation of
the environment [16]), while local planning to waypoints
(including obstacle avoidance) is done in the odometry
frame.

B. System Components

We use a synchronized stereo and IMU camera sys-
tem [17]. The images and inertial measurements are input
into the VIO estimator described in [3], which tracks features
across keyframes and integrates inertial data between camera
frames to provide pose estimates even in environments with



small numbers of visual features. The output of this estimator
is used as the odometry frame for the robots described in this
paper.

The output of this system is fed into the multi-agent map
distribution backend Map API [18] to allow map-sharing with
multiple agents as well as loading the model for localization.
Besides the data-sharing aspect the Map-API provides a
mechanism to run algorithms asynchronously on a particular
version of the map, while adding new data to it in the mean-
time. In our case we leverage this possibility to continously
feed new map-data from the odometry into the system while
running localization at the same time.

To provide higher localization accuracy, we prefer to use
a previously loop-closed and bundle-adjusted reference map.
This step removes most of the drift from the estimator,
allowing as accurate as possible of a representation of the
world through the map. In our setup, it is also possible
to localize against a raw, non-bundle-adjusted map, to for
example align to the local maps of other robots, but this has
the disadvantage of localizing to a drifting frame.

In order to find matches between current keypoints and
landmarks in the map, we use projected BRISK descrip-
tors [9] for accelerating the Kd-Tree based nearest neighbor
search. To reject implausible matches we apply covisibility
graph filtering [19] which removes most of the outliers. The
remaining matches are fed to a PnP RANSAC scheme which
finds the optimal inlier set subsequently used for localization.
In our system, we use gP3P implementation provided by
OpenGV [20].

The non-linear optimization and refinement of alignment
to the global map is done using the Google Ceres solver
[21].

IV. EVALUATION

We quantify the performance of our complete localization
system on data from real flighs with an MAV platform,
compared to ground truth from external sensing. We use the
same system as for on-board localization for evaluations.

A. Ground Truth

We evaluate the performance of the proposed system using
datasets from the European Robotics Challenge (EUROC)1

which cover the machine hall at ETH: a typical environ-
ment to demonstrate industrial inspection using MAVs. Each
dataset consists of precisely synchronized stereo images
(752 × 480) at 20 Hz and IMU data at 200 Hz, using the
sensor described in [17] mounted on an AscTec Firefly. The
datasets cover a broad range of motions, ranging from slow
flight to highly dynamic maneuvers.

For ground-truth we used a laser-tracker2, which precisely
measures the 3D position by tracking a prism mounted on
the MAV. We run a batch optimization which also estimates
orientation of the IMU, so the ground truth includes full 6
DoF pose.

1http://www.euroc-project.eu/
2LEICA Nova MS50, http://www.leica-geosystems.com/

de/Leica-Nova-MS50_103592.htm

B. Evaluation Setup

Out of the total five available datasets containing MAV
flights, two pairs of trajectories cover the same parts of the
environment and are thus useful to evaluate our system. A
reconstructed 3D pointcloud of the environment as well as
the trajectory of the MAV are shown in Fig. 1.

To evaluate the system performance we use one of the
datasets per pair and build a reference map from it to be
used for localization. In order to obtain exact error metrics
we use ground-truth poses for the keyframe positions of these
vertices and jointly optimize the poses and 3D landmarks of
the model using visual-inertial bundle-adjustment.

Given the model of the environment we then run different
versions of the online VIO and perform localization against
the model. As a base-line we use the VIO output without
localization or bundle-adjustment. To evaluate the influence
of the limited number of keyframes in the VIO sliding
window, we evaluate a second version (BA) which denotes
the pose-estimate after running a full batch visual-inertial
bundle-adjustment on the VIO output.

The last two methods evaluate the benefit from closed
loop-localization: The first version denoted as VIO-
localization combines the VIO estimates from one dataset
with localization queries to a map built from a dataset
with a similar trajectory, and baseframe optimization in a
sliding window of 20 keyframes. The second version uses
the bundle-adjusted VIO poses (BA-localization) as the input
to the localization, in order to demonstrate that localization
improves the estimated alignment to the global frame even
when most of the drift is removed by bundle-adjustment.

To properly compare poses of the non-localized versions
to the ground truth, we assume a first-pose alignment, as
is often available on robotic systems: we assume that the
starting pose of the robot is known exactly, and then measure
the estimator drift from that position. In the case of the
localized datasets, we give no initialization at all to the
alignment to the global frame (which is often up to 180◦s and
several meters off), but do not consider the error in the first
2-3 frames before enough inliers are found to do a proper
baseframe alignment.

Given the high accuracy of the VIO over a short time-
frame, it is not necessary for the localization to run at every
keyframe. However as shown in Table II, even performing
the optimization at every frame is solvable in real-time.

C. Results

The results from all datasets are shown in Table I. Since
we want to evaluate the alignment to a global frame, we
only consider the absolute translation and rotation error
to the global frame. We show a typical trajectory of the
MAV, and compare the raw VIO estimator output with the
localized version in Fig. 4. For each vertex in the localized
version, we show the latest estimate of its alignment to the
global frame. Though the quality of our estimator can be
seen in the small amount of drift over a long, complex 3D
trajectory, localization substantially improves the accuracy of
positioning within the global frame and helps mitigate drift.

http://www.euroc-project.eu/
http://www.leica-geosystems.com/de/Leica-Nova-MS50_103592.htm
http://www.leica-geosystems.com/de/Leica-Nova-MS50_103592.htm


Step Time [ms]
Loop Closure Detection (per vertex)

Descriptor Matching (2 frames) 11.01
PnP + RANSAC 6.39

Optimization (per frame update)
Optimization setup 0.25
Minimization 14.36

TABLE II: The computational cost of different sub-parts of the localization
and frame alignment. Descriptor-matching and outlier rejection using PnP
in a RANSAC scheme takes about 25% of the time, with the rest being
spend on solving the baseframe transformation alignment problem.

In Fig. 5a, we show the influence of localization on
the absolute position error. As expected, raw VIO has the
highest errors and the highest variance, and bundle-adjusting
the trajectory significantly decreases the error and variance.
However, what is more significant is the impact of local-
ization on both the error and the variance in both cases -
running localization is better for correcting drift than just
bundle-adjustment, and running localization on the bundle-
adjusted trajectory reduces the error to negligible levels.

One important note about the performance of our algo-
rithm is its reliance on 2D descriptor matches, which depend
heavily on the similarity between viewpoints. Therefore,
proximity of each vertex to the reference trajectory plays
a major role in the quality of localization. Fig. 5b shows the
relationship between detected number of structure constraints
and proximity to the nearest vertex in the reference map,
aggregated over all datasets presented in Table I. As can be
expected, many more matches are found when the viewpoint
is similar to one from the reference map.

Another big impact factor is the size of the sliding window
used for localization: that is, how many vertices to use in the
least-squares optimization. The advantage of more vertices
is helping filter out outliers or low-quality matches and help
smooth the baseframe alignment (more matches leads to a
more accurate pose estimate). However, this comes at a price:
since this is essentially a temporal filter, having too large of
a sliding window will cause the frame alignment estimate to
lag behind and not be as effective for correcting drift - since
we do not correct the pose estimates of the past vertices
within the local frame. This can be likened to estimating
a drifting bias: using information that is too old can lower
the accuracy of the latest alignment estimate. We show the
results of evaluating different sliding window sizes (1, 5, 10,
20, 50, 100, and 200) in Fig. 6. For the other evaluations, a
sliding window size of 20 was chosen, as it appears to have
the most consistent performance across all datasets.

V. EXPERIMENTS

In order to demonstrate the real-time performance and reli-
ability of our algorithm, we designed an experiment to show
the localization accuracy in real, unstructured environments
and across two platforms with very different movement
modalities. We aim to show how a ground robot and an
aerial robot can localize against the same map with enough
accuracy to allow the helicopter to autonomously land on
the ground robot, despite imperfect sensing information and
control.
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A. Platforms

We use a Pioneer 3DX3 as the ground platform, which uses
differential-drive with a 2.6 GHz dual-core Intel i5 CPU on-
board, and features a state-of-the-art helicopter landing pad.
The MAV is an AscTec Firefly4, with an Intel i7 CPU, the
same platform used to generate the ground truth datasets.
Both platforms use the sensing and localization pipeline as
described in Section III and are shown in Fig. 7a.

B. Experiment Setup

To reduce the influence of other factors (such as controller
error) as much as possible, we chose a very simple experi-
mental setup. We first build a global map using the helicopter
from the on-board visual-inertial odometry. This map is then
bundle-adjusted, and we project disparities from the bundle-
adjusted vertex poses into 3D to generate a 3D voxel-based

3Adept Mobile Robots http://www.mobilerobots.com/
ResearchRobots/PioneerP3DX.aspx

4http://www.asctec.de/en/uav-uas-drones-rpas-roav/
asctec-firefly/

http://www.mobilerobots.com/ResearchRobots/PioneerP3DX.aspx
http://www.mobilerobots.com/ResearchRobots/PioneerP3DX.aspx
http://www.asctec.de/en/uav-uas-drones-rpas-roav/asctec-firefly/
http://www.asctec.de/en/uav-uas-drones-rpas-roav/asctec-firefly/


Dataset Visual-Inertial Odometry VIO + Localization Bundle-Adjusted BA + Localization
Trans [m] Rot [rad] Trans [m] Rot [rad] Trans [m] Rot [rad] Trans [m] Rot [rad]

Dataset 1 [77 m, 182 sec] 0.37±0.23 0.13±0.11 0.19±0.23 0.09±0.13 0.12±0.02 0.02±0.01 0.04±0.05 0.01±0.02
Dataset 2 [70 m, 150 sec] 0.23±0.08 0.05±0.08 0.13±0.23 0.05±0.08 0.07±0.05 0.01±0.01 0.02±0.02 0.01±0.01
Dataset 3 [90 m, 97 sec] 0.44±0.17 0.05±0.04 0.26±0.26 0.08±0.38 0.35±0.24 0.02±0.01 0.10±0.14 0.06±0.38
Dataset 4 [96 m, 108 sec] 0.26±0.14 0.01±0.01 0.09±0.06 0.01±0.01 0.18±0.14 0.02±0.01 0.07±0.02 0.01±0.01

TABLE I: Comparison of the pose-estimation error of different variants of the proposed system to ground-truth with visual-inertial-odometry (VIO) as a
base-line. VIO denotes the raw odometry estimate, aligned to the ground truth at the first pose, VIO + Localization the result with localization without
first-pose alignment. The pose estimate of the VIO can be improved by full-batch visual-inertial bundle-adjustment Bundle-Adjusted, especially when
combined with localization BA + Localization.
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a large lag and again increases error.

occupancy grid (octomap) to be used for global path planning
on-board the MAV. The same reference map is used on board
both robots, to show the ability of our system to localize
multiple platforms against the same global reference.

We then drive the ground robot under manual control
to a location, and take its reported localized alignment
within the global map as the goal destination for the MAV.
The helicopter then takes off and plans a path within the
global map to the ground robot’s localized location, and then
performs a landing maneuver.

This experiment shows that the accuracy of localization
running in closed-loop on board both systems is high enough
that they can collaborate, even without explicitly determining
their relative positions.

C. Results

In the experiment, which is available in the video accom-
panying this submission, we show a successful rendezvous
between the two robots. Despite different viewpoints be-
tween the aerial vehicle and the ground robot, the two were
able to share the same small map and very accurately locate
themselves within it. Fig. 7b shows an octomap represen-
tation of the reference map, overlaid with the helicopter’s
actual trajectory during the experiment in red, and the tra-
jectory used to build the reference map in blue. Note that the
reference map was built on-board the MAV platform, using
the complete VIO-localization system proposed in this work,
with only a small number of iterations of bundle-adjustment
after. Despite the difference in viewpoint between the ground
and aerial robot, the ground robot was successfully able to

(a) (b)
Fig. 7: Left: The result of the experiment, where the helicopter au-
tonomously landed on the ground robot based on visual-inertial localization
against the same map running on-board both robots. Right: An octomap
representation of the sparse map that both robots localize against. The path
used to gather the reference map is shown in blue, and the helicopter’s
actual trajectory during the experiment is shown in red.

localize against this map.
During this experiment, we also demonstrate the real-time

on-board capability of the system. The runtimes of each
component of the localization system, per keyframe and per
frame alignment update, are shown in Table II. Per keyframe,
descriptor matching is the slower step and depends on the
size of the reference map. However, our usage of a hash-
table based lookups [22] allows us to scale to larger maps
without degrading look-up times significantly. The alignment
optimization step does not need to run at every keyframe,
but is nonetheless fast enough to do so. Additionally, since
we use only a sliding-window of keyframes, this sets an
upper limit on the number of residuals and the 4-term
parameterization of the optimization terms allows this stage
to scale.

VI. CONCLUSIONS

In this work, we show a real-time, entirely on-board
system integrating visual-inertial odometry and localization
against a previously-built map that aims to combat the effects
of estimator drift.

We rely on rigidly aligning the baseframes of the local
map and reference map, in order to keep the local map
consistent with the robot’s visual-inertial odometry frame.
This allows one map to always be consistent with the frame
used for the robot’s current state estimate and local planning,
while the other is always aligned with the global map. We
also propose a scheme in which the global planner uses
this frame alignment estimate to trigger re-planning and re-
projecting the global plan into the local coordinate frame



when necessary.
To demonstrate the performance of our system, we run

evaluations of the complete closed-loop system on a series
of datasets from MAV flights in a realistic industrial survey
environment, compared with ground truth from external sens-
ing. Our evaluations show substantial reduction in estimator
drift and overall accuracy of position estimation in a global
frame.

Finally, to show our system running on-board real robots,
we design an experiment where an MAV and a ground robot
localize in real-time against the same map. The MAV then
uses these localization estimates to autonomously land on
top of the ground robot.

One possible extension to this work includes using a
particle filter for initialization, to increase robustness in the
rare case of wrong initial alignment estimates. Another im-
provement would be to increase robustness of the descriptor
matching from different viewpoints, which would especially
help in the case of aerial-ground robot collaboration.
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