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Abstract— Recent developments in smartphones create an
ideal platform for robotics and computer vision applications:
they are small, powerful, embedded devices with low-power
mobile CPUs. However, though the computational power of
smartphones has increased substantially in recent years, they
are still not capable of performing intense computer vision tasks
in real time, at high frame rates and low latency.
We present a combination of FPGA and mobile CPU to
overcome the computational and latency limitations of mobile
CPUs alone. With the FPGA as an additional layer between the
image sensor and CPU, the system is capable of accelerating
computer vision algorithms to real-time performance. Low
latency calculation allows for direct usage within control loops
of mobile robots.
A stereo camera setup with disparity estimation based on
the semi global matching algorithm is implemented as an
accelerated example application. The system calculates dense
disparity images with 752x480 pixels resolution at 60 frames
per second. The overall latency of the disparity estimation is less
than 2 milliseconds. The system is suitable for any mobile robot
application due to its light weight and low power consumption.

I. INTRODUCTION

Cameras are the ideal sensors for many applications,
because they provide a large amount of information about
the environment at high frame rates. Image sensors are
also small, light-weight, and have low power consumption,
which makes them ideal for embedded applications, where
other sensors such as LIDAR are impractical to use. The
main drawback of image sensors is the amount of image
processing required to obtain usable information about the
environment.
Even though most smartphones now feature at least one
image sensor and can record and play back videos at
high resolutions, they lack sufficient processing power to
run sophisticated computer vision algorithms in real time.
Cameras are widely used in mobile robot applications for
obstacle detection and localization. However, because of
the processing power required, they still use full-size CPUs
for data processing, which have larger weight and power
requirements. Using CPUs in the control loop of robotic
systems also increases the latency between image acquisition
and processed output, which is undesirable for high-speed
robotics applications.
To address these problems, we present a computationally
powerful system based on a combination of a Field Pro-
grammable Gate Array (FPGA) and a mobile CPU. This
combination allows us to overcome the processing power
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limitations of mobile CPUs alone, while maintaining their
low power consumption, light weight, and small package.
Exploiting the parallel architecture of the FPGA allows
us to parallelize the vision processing, decreasing latency
and increasing frame rate and resolution. Subsequently, the
mobile CPU receives original and processed image data and
can be used for more advanced tasks such as mapping and
path planning.
Stereo vision is important for robotics applications, since
it gives dense 3D information about the environment. We
implement a full stereo pipeline, including camera lens
distortion correction, image rectification and stereo matching
based on epipolar geometry as an intellectual property (IP)
core in the FPGA. The output is a combination of the original
image and processed disparity image, which appears simply
as image data to the mobile CPU, allowing the user to not
worry about the implementation details of the FPGA.
The core can process the image data streams of two image
sensors with 752x480 pixels resolution running at 60 frames
per second (fps). A dense disparity map at full resolution
and frame rate based on the semi global matching (SGM)
algorithm [8] is calculated to show the potential of the FPGA.
The overall latency of the disparity estimation pipeline is
less than 2 milliseconds (ms) and the power consumption
for the system in full operational mode is less than 5 Watts.
The small size and weight of the system make it ideal for
applications in constrained environments, such as mobile
robots or even micro aerial vehicles (MAVs).
The contributions of this work are as follows: we first show
related work concerning computer vision on constrained
platforms and existing implementations on FPGAs. Second,
we introduce our general system setup. The efficient im-
plementation of the SGM algorithm within the FPGA and
details on all the major hardware components is shown
afterwards. Lastly, we provide some possible applications
for our device and show results of the different IP modules
including latency and power consumption.

II. RELATED WORK

FPGAs are successfully used to accelerate computer
vision algorithms. Due to its parallel characteristics, stereo
matching fits well within the FPGA architecture. A real-time
stereo matching implementation based on a census rank
transformation by [14] is shown in [10]. The implementation
in [7] calculates disparity values for high-definition stereo
video at full frame rate. The system in [9] produces disparity
maps at 127 fps and 376x240 pixels resolution based on
block matching. [6] and [1] show an implementation of



real-time SGM-based stereo [8] on FPGA, producing
disparity maps at 640x480 resolution at 25 fps. However,
these implementations are shown on high-end, large FPGA
development boards, and furthermore do not address the
connection of the cameras to the system. Both of these
implementations use the FPGA as a co-processor, while in
our system, the FPGA runs the complete pipeline.
A combination of FPGA, CPU and mobile CPU mounted
on a quadrotor is shown in [12]. The system uses a FPGA
and an Intel Core2Duo CPU to calculate high quality depth
images with 752x480 resolution at 15 fps. The cameras
are connected via USB to the CPU. The CPU performs a
planar rectification and corrected image data is sent to the
FPGA afterwards. Estimated disparity values are sent back
to the CPU to perform post processing steps. Due to the
data transfer between the devices the overall latency of their
disparity estimation pipeline is quite high with 100 ms.
However the system is successfully used for ego-motion
computation on a quadrotor.
The vision based quadrotor shown in [5] uses an Intel
Core2Duo CPU to process the data stream of a stereo
camera head. Successful navigation based on a dense
disparity map with limited frame-rate is shown.
In [11], the authors present a method to estimate the
three dimensional motion field out of stereo sequences. A
real-time implementation with a combination of FPGA and
GPU is able to calculate a dense motion field at 10 frames
per second. Since the system is targeted for automotive
driver assistance, they do not consider the same size and
weight restrictions as MAVs.
A low power and small scale FPGA system to determine
optical flow within MAVs for position control is presented
in [13]. 2D optical flow estimation with a single FPGA
from up to 11 image sensors is proposed.

III. SYSTEM SETUP

This section shows the general system structure of the
FPGA-mobile CPU combination and presents the modules
of the stereo example application. An overview of the setup
is shown in Figure 1. The FPGA is placed as an additional
layer between image sensors and mobile CPU. It acts towards
the CPU as a regular image sensor, which allows for an easy
integration into the existing frame grabber infrastructure of
the mobile CPU.
The image sensors are directly connected to the FPGA
using low-voltage differential signaling (LVDS) interfaces.
The data streams of the cameras are processed in real-time
within the FPGA. Processed and raw image data streams are
combined and sent to the mobile CPU using the dedicated
imager bus. A frame grabber module captures the data and
stores it in system memory of the mobile CPU using direct
memory access. This allows for guaranteed transmission time
of image data between sensor and mobile CPU.
Resolution and frame rate of the received image at the mobile
CPU are fully flexible. For example, in a stereo camera setup
with disparity computation, the resulting image could have
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Fig. 1: System overview, the FPGA is placed between the
mobile CPU and image sensors. These are directly connected
to the FPGA. The video streams are deserialized, undistorted
and rectified. Afterwards disparity estimation is performed.
Processed and raw image data is synchronized in the output
generator. Finally, data is sent to the frame grabber of the
mobile CPU using its dedicated imager bus.

a horizontal resolution of three times that of the original
camera. This allows to stream out left, right image, and the
disparity map side by side. The synchronization is performed
within the FPGA to maintain a simultaneous output of raw
data and processed data.

A. De-Serialization and Synchronization Block

The high speed LVDS serial link from the image sensor
is received and de-serialized within this block. The image
sensors serialize pixel and control data and stream them
out using a LVDS link. This allows for undisturbed data
transmission using only a single pair of cables.
A synchronization of the data streams of the independent
image sensors is performed if necessary. A buffer is used to
delay one data stream to end up with two pixel-synchronized
data streams. The image sensors stream out pixel values
sequentially row by row, starting with the top left pixel of
the captured image.

B. Undistortion and Rectification Block

Lens distortion correction and rectification are combined
into a single operation since they are both warp operations.
Incoming pixel values are stored in a buffer. The coordinate
of the correct pixel location with respect to lens distortion
and rectification is calculated and used to find the corre-
sponding pixel value in the buffer. Radial and tangential
distortion parameters as described in [4] are taken into
account. Distorted coordinates xd, normalized with respect
to focal length fc and principal point cc, are calculated in
real-time according to

xd = (1 + κ1r
2 + κ2r

4 + κ3r
6)x+ xt. (1)

Where x denotes the original normalized coordinate and r
the distance to the principal point

r2 = x21 + x22 (2)

and
xt =

[
2ξ1x1x2 + ξ2(r

2 + 2x21)
ξ1(r

2 + 2x22) + 2ξ2x1x2

]
(3)

represents the shift caused by the tangential distortion.
The radial distortion parameters [κ1, κ2, κ3], tangential
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Fig. 2: Eight possible directions for the cost paths in the
SGM algorithm are shown on the left. Paths from bottom to
top increase the latency of the disparity estimation. The five
used directions without increasing the latency are shown on
the right.

distortion parameters [ξ1, ξ2], camera intrinsic parameters
[fcx, fcy, ccx, ccy] as well as the homography for rectification
are estimated using camera calibration methods as described
in [3]. The outputs of this block are undistorted and rectified
pixel values where the epipolar lines are matched with the
horizontal direction of the image.

C. SGM Stereo Block

Stereo matching with epipolar geometry is performed on
the two data streams after the undistortion and rectification
block. The best disparity matching candidate is selected
depending on a local cost function and global consistency
constraints based on the SGM stereo algorithm.
The constraint costs are aggregated along independent one-

dimensional paths across the image, starting at the image
border. Since images are sent out line by line starting at
the top left pixel, only top to bottom optimization path
directions are used in order to not increase the latency.
The drawback of using only five paths is a slightly worse
matching performance. In [1] a comparison between eight
and four paths is made using the Middlebury set. Figure 2
shows the possible directions of the paths. The aggregated
costs of a pixel p along a path α for a disparity candidate d
are given by

Gα(p,d) = C(p,d)−min
β

Gα(p− α, β)

+min


Gα(p− α, d)

Gα(p− α, d− 1) + P1

Gα(p− α, d+ 1) + P1

min
β
Gα(p− α, β) + P2α


(4)

where C(p, d) denotes the local cost function at pixel d
for a disparity candidate d. The minimal path cost from
the previous pixel in the direction of the path is added to
the local cost function. P1 and P2α are penalty values for
changes or discontinuities in the disparity values. Subtracting
the minimal path costs from the previous pixels among all
disparity candidates prevents the path costs from increasing
monotonically. A detailed description of the parameters is
given in [8].
The local costs and global constraint costs for all disparity
candidates and path directions are calculated in real-time on
the pixel data stream.

Afterwards, a left-right consistency check to detect occluded
regions is performed on the estimated disparity value. Finally,
a median filter removes spikes in the left-right checked
disparity values. The output of this block is a disparity value
stream.

D. Output Generator

The independent data streams of the different IP blocks
are combined to a single stream and sent to the mobile
CPU in this block. Control signals to the image sensors
are generated according to the selected output resolution and
frame rate. Buffers are used to maintain the synchronization
of the different data streams.

E. FPGA Infrastructure

Besides the Computer Vision IP cores there are other
components included in the FPGA. We instance a Microb-
laze soft-core CPU to perform maintenance tasks, such as
receiving parameters and configuring the image sensors over
an I2C interface.
This small CPU is connected to the IP modules, but is not
involved in processing the image data stream. It is tightly
coupled with registers of the IP modules to set the parameters
in the undistortion and rectification module and adjust the
penalty values of the SGM module.
A phase-locked loop is instanced to generate the different
clocks needed by the IP cores as well as by the image
sensors. Both image sensors are connected to the same clock
domain, and after a synchronous reset their internal state ma-
chines are in the same state. This leads to a synchronization
on a per-pixel basis which supersedes any synchronization
buffers and lowers the latency.

IV. IMPLEMENTATION

In the following section, we describe the architecture of
the developed computer vision IP cores performing synchro-
nization, lens distortion correction and real-time SGM stereo
matching in detail.

A. De-Serialization and Synchronization

The image sensor outputs a start bit, an 8-bit pixel value,
2 bits for start-of-frame and start-of-line signals, and a
stop bit. This 12 bit packet is transmitted to the FPGA
using a single LVDS line with 12x pixel clock speed. An
instanced 6:1 de-serializer generates an internal 6-bit signal
at 2x pixel clock rate and a successive 2:1 de-serializer
reconstructs the original 12 bit signal at pixel clock speed.
The synchronization of the serial frames is performed using
the included start and stop bits. The image sensors output
pixels at 25 MHz clock speed, which results in a 300 MHz
transmission of the serialized data over the LVDS line.

B. Undistortion and Rectification

The synchronous data streams of both cameras are then
connected to the undistortion and rectification module. Both
data streams are stored in an internal buffer. In parallel, the
distorted and unrectified address is computed with respect
to the camera calibration parameters as described in Eq. (1).
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Fig. 3: Disparity estimation data path for a simplified dispar-
ity search range of four pixels. The census cost is calculated
based on a 7x7 pixel window in parallel for the four
candidates. SGM costs are aggregated for five independent
paths in parallel for every disparity candidate. The candidate
with the minimal sum of the five aggregated path costs is
taken as the valid disparity output. A left-right consistency
check is performed to detect occluded regions, and finally a
3x3 pixel sized median filter removes spikes.

The generated address points to the buffer location where
the pixel values are stored to create an undistorted and
rectified data stream. As the addresses point to fractions of
buffer positions, bilinear interpolation is performed with the
four closest neighbours to create an accurate output. The
precision of the fixed point algorithm is chosen to fit in the
available 18-bit multiplication units. A delay of several lines
is included with this module, since the pixel displacement
caused by the lens distortion and the rectification forces a
buffer of adequate size.
The address generator unit is time-shared between both cam-
eras to save multiplication units. Therefore, the clock speed
is doubled within the address calculation of the module.

C. SGM Stereo

A local cost computation, based on the census rank
transformation [14], is performed in the SGM stereo block.
A 7x7 pixel window is used to create the census mask. The
hamming distance, which is the number of bits different in
the two census masks, measures the dissimilarity between
the two masks. Since the census mask is less sensitive to
illumination changes than other algorithms (such as sum of
absolute differences) the internal automatic gain and expo-
sure functions of the image sensors can act independently
from each other.

Figure 3 shows an overview of the disparity estimation
module. The SGM costs are dependent on the actual census
cost and the minimum of the previous SGM costs along the
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Fig. 4: Cost aggregation data path, simplified example for
a disparity search range of four pixels. Local cost functions
C(p, d) and path costs are added to the final cost Gα(p, d)
along the path in direction α. Costs are also stored in a
buffer and reused to calculate the next cost depending on
the minimal costs and the penalty values P1 and P2α. The
size of the buffer is dependent on the direction α of the path.

according direction. To find the minimum SGM cost from the
previous step among all disparity candidates and calculate the
new SGM cost, the module internal clock is a multiple of
the pixel clock speed. This allows for a calculation of SGM
path costs in real-time.
In order to not increase the overall latency, only cost path
directions from top to bottom are considered . Additional
the direction from right to left, reverse the pixel stream, can
be added as well, increasing the latency by only two lines.
Figure 2 shows the five possible cost paths directions without
increasing the latency of the disparity estimation.
The architecture of the cost path calculation is identical for
all directions. Different directions are achieved by buffering
the calculated costs in memory modules. The size of the
buffer defines the path direction. Figure 4 shows the archi-
tecture of a single path constraint cost calculation module
based on Eq. (4).
The smoothing penalty factors P2α are inversely proportional
to the difference of the pixel values of neighbouring pixels
in the according direction of path α. This allows for smooth
areas within the disparity image by not diffusing gaps caused
by a sudden depth change in the scene. P1 is constant and
empirically determined.
The costs for every direction and every disparity candidate
are accumulated and stored in independent internal memory
blocks of the FPGA. Disparity values are estimated with
pixel accuracy.

D. Android Kernel

We developed a custom camera driver for the Android
system running on the mobile CPU. The Android camera



stack handles the connected FPGA as a regular camera.
Image data is transfered using direct memory access without
stressing the mobile CPU. It is possible to do image capturing
and even video recording at full frame rate with real-
time H.264 encoding. By exploiting the dedicated encoding
hardware present in the SoC module, the mobile CPU is not
stressed, leaving more resources for higher-level processing
and other applications.

E. Hardware Components

We use MT9V034 CMOS image sensors from Aptina.
They have a global shutter architecture and provide images
with 752x480 pixels resolution at up to 60 frames per second.
A small sized FPGA board from Enclustra1 with the shape of
a SO-DIMM memory module is used. This board is equipped
with a Xilinx Artix7 XC7A100T FPGA. The Artix FPGA
family offers lowest cost and lowest power consumption
among the different available families.
As mobile CPU we use a Samsung Exynos 4412 System
on Chip (SoC) Module with a built in Cortex-A9 Quad
Core CPU. There is a dedicated camera interface available to
receive image data from the FPGA. 2 GByte DDR2 memory
and a separate 3D accelerator make the module a powerful
platform. The SoC module offers also a lot of common
interfaces as HDMI, USART, USB and a SD card slot.

V. RESULTS

In this section, we show the implementation results and
resource usage of the IP cores instanced on the FPGA. We
then show the output of the different IP cores. Finally, we
present the specifications of the system.

A. Implementation

The used resources of the SGM stereo core with 32
disparity candidates, the lens distortion correction and epipo-
lar line rectification core are shown in Table I. Additional
the resources occupied by the implemented soft-core CPU
performing maintenance tasks are shown. The SGM stereo
block consumes most of the available slices as every disparity
candidate and according path costs are computed in parallel.
50 lines per camera are buffered in the rectification and
undistortion module, which is sufficient in most situations
and even for poorly aligned cameras.

The IP blocks are pipelined and run at 25 MHz pixel
clock speed, with a few exceptions. The multiplication units
within the undistortion rectification block are time shared
between both image streams and run at 50 MHz. The SGM
cost aggregation modules run at 250 MHz to support cost
calculation between successive pixels. The overall system
supports a pixel clock speed up to 75 MHz and is therefore
able to process resolutions and frame rates up to 720p60.
Image data of the right camera processed by the undistortion
and rectification module is shown in Figure 5b. The output
of the SGM stereo module is presented in Figure 5c.

1www.enclustra.com

Module
Slice occupied Embedded DSP

Registers Slices Memory 48E1
(Kbits) Units

Undist.& 6431 1225 1000 41Rect.
SGM Stereo 30633 8429 2377 0
Microblaze 12633 4827 76 3
Others 440 82 19 0
Total 50137(39%) 14563(91%) 3472(71%) 44(18%)

TABLE I: Used resources of the SGM stereo design includ-
ing distortion correction, rectification and Microblaze Soft-
Core CPU, all implemented on an Artix7 FPGA.

B. Specifications

We present the specifications of the FPGA-mobile CPU
combination with disparity estimation as an accelerated
example in Table II. Our system produces dense disparity
maps based on the SGM algorithm in real-time. The FPGA
implementation is pipelined at pixel clock speed of 25 MHz.
Resolution of 752x480 pixels and frame-rate of 60 fps is
limited by the used image sensors, not the computational
power of the system. The overall latency of the disparity
estimation pipeline is 2 ms, corresponding to 60 lines at
pixel clock speed, and is mostly caused by the buffer in the
lens distortion correction module.
The total power consumption is less than 5 Watts for the
disparity estimation including cameras, FPGA, mobile CPU
and power converters. The system is small in size at 76 mm
by 46 mm and light weight at 50 grams. Figure 5a shows
the baseboard.

VI. CONCLUSION

In this work, we have presented a small size, light weight,
and low power consumption system for doing vision process-
ing on FPGA and mobile CPU. The implemented example of
SGM-based stereo matching, running at 60 Hz at 752x480
resolution, is a substantial performance improvement over
any other system available in the form factor and power
budget. This makes the system perfect for mobile robotics
applications, especially for MAVs. Additionally, because the
dynamics of MAVs are very fast, our system’s low latency
and high update rate are essential for obstacle detection and
state estimation. For example, high speed maneuvers with
fixed-wing airplanes such as described in [2] require on-
board processing in real-time in order to work outside of
a motion capture environment.

Since the configuration of the FPGA is interchangeable,
the stereo core can be replaced to accelerate any other
algorithm. Using pre-compiled IP blocks even inexperienced

Characteristic Value Unit Characteristic Value Unit
Size 76x46 mm Resolution 752x480 pixel
Weight 50 g Frame rate 60 s−1

Power 5 Watts Latency 2 ms
Consumption Pixel Clock 25 MHz

TABLE II: Overview of the technical specifications.



(a) Baseboard bottom side with FPGA on the left, and top side with mobile CPU on the right

(b) Right corrected image (c) Disparity map

Fig. 5: Photo of baseboard with FPGA and mobile CPU in (a), right image after lens distortion correction and rectification
in (b), and the disparity map calculated in the SGM stereo module is shown in (c).

FPGA users can adapt the configuration to suit their appli-
cation. The output of the FPGA appears as a regular camera
video stream to the mobile CPU.

Future work will include demonstrating the robotics ap-
plications of this system by mounting it on a MAV. Addi-
tionally, we plan to investigate an implementation of visual
odometry estimation using the combined depth and image
data directly on the FPGA.
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